THIS FILE IS MADE AVAILABLE THROUGH THE DECLASSIFICATION EFFORTS AND RESEARCH OF:

THEB BLACK VAUMT

THE BLACK VAULT IS THE LARGEST ONLINE FREEDOM OF INFORMATION ACT / GOVERNMENT RECORD CLEARING HOUSE IN THE WORLD. THE RESEARCH EFFORTS HERE ARE RESPONSIBLE FOR THE DECLASSIFICATION OF THOUSANDS OF DOCUMENTS THROUGHOUT THE U.S. GOVERNMENT, AND ALL CAN BE DOWNLOADED BY VISITING:

HTTP:I/WWW.BLACKVAULT.COM
YOU ARE ENCOURAGED TO FORWARD THIS DOCUMENT TO YOUR FRIENDS, BUT PLEASE KEEP THIS IDENTIFYING IMAGE AT THE TOP OF THE PDF SO OTHERS CAN DOWNLOAD MORE!

Restricted-

Declassified and approved for release by NSA on 09-19-2005 pursuant to E.O. 12958, as amended

WAR DEPARTMENT
OFFICE OF THE CHIEF SIGNAL OFFICER washington

MILITARY CRYPTANALYSIS Part III
 SIMPLER VARIETIES
 OF APERIODIC SUBSTITUTION SYSTEMS

By

WILLIAM F. FRIEDMAN
Princtpal Cryptanalyst
Signal Intelligence Service

PREPARED UNDER THE DIRLCTION OF THE CHILF SIGNAL OFFICER

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON 1939

MILITARY CRYPTANALYSIS. PART III. SIMPLER VARIETIES OF APERIODIC SUBSTITUTION SYSTEMS

CONTENTS
Section Paragraphs Pages
I Introductory 1-4 1-4
II Solution of systems using constant-length keying units to encipher variable-length plain- text groupings, I $5-9 \quad 5-7$
III Solution of systems using constant-length keying units to encipher variable-length plain- text groupings, II 10-13 8-13
IV Solution of systems using constant-length keynig units to encipher variable-length plain- text groupings, III 14-16 14-18
V Solution of systems using variable-length keying units to encipher constant-length plain- text groupings 17-22 19-27
VI Review of auto-key systems 28-29
VII Solution of cipher-text auto-key systems 24-29 30-43
VIII Solution of plain-text auto-key systems 30-33 45-49
IX Methods of lengthening or extending the bey. 34-36 50-52
X General principles underlying solution of systems employing long or continuous keys. 37-40 53-57
XI The "coincidence" or " r test" 41-44 58-72
XII The "cross-product" or " x test" 45-48 73-78
XIII Applying the cross-product or x test 49-51 79-93
XIV The "monoalphabeticity" or " Φ test" 52-53 94-96
XV Concluding remarks. 54-55
Appendix 1 Additional notes on methods for solving plain-text auto-keyed ciphers 1-7 98-116
Index 117-118
Analytical key for Part III 119

Sifction I

INTRODUCTORY

1 Preliminary remarks - a The text immediately preceding this devoted itself almost exclusively to polyalphabetic substitution systems of the type called repeating-key ciphers It was seen how a regularity in the employment of a lumited number of alphabets results in the manifestation of periodicity or cyclic phenomena m the cryptogiam, by means of which the latter may be solved The dufficulty in solution is directly correlated with the type and number of cipher alphabets employed in specific examples
b Two poocedures suggest themselves for consideration when the student crypianalyst realizes the foregoing culcumstances and thmks of methods to elmunate the weaknesses inherent in this cryptographic system First, noting that the defficulties in solution increase as the length of the key increases, he may study the effects of employing much longer keys to see if one would be warranted in placing much tiust in that method of increasing the security of the messages Upon second thought, hov ever, rei embering il at as a general rule the first step in the solution consists in ascertaming the number of alphabets employed, it seems to hum that the most logical thing to do would be to use a procedure which will avord perodicity altogether, will thus elmmate the cyche phenomena that are normally manifested in cryptograms of a periodic construction, and thus prevent an enemy cryptandyst from takng even a first step toward solution In other words, he will mvestrgate the possibilities of aperioduc systems first and if the results are unsatisfactory, he will then see what he can do with systems using lengthy keys
c Accordingly, the first part of thes text will ke devoted to an examination of certam of the very simple varieties of aperiodic, polyalphabetic substitution systems, after this, methods of extending or lengthening short mnemonic keys, and systems using lengthy keys will be studied

2 General remarks upon the nature of cryptographe periodicity - a When the thoughtful student considers the matter of periodicity in polyalphabetic substitution systems and tries to ascertan its real nature, he notes, with some degree of interest and surprise perhaps that it is composed of two fundamental factors, because there are in reality two elements involved in its production He has, of course, become quite famuliar with the idea that periodicity necessitates the use of a keying element and that the latter must be employed in a cyclic manner But he now begins to realize that there is another element involved, the significance of which he has perhaps not fully appreciated, viz, that unless the key is apphed to constant-length plain-text groups no periodicity will be manfested externally by the cryptogram, despite the repetitive or cyclic use of a constant-length key This realization is quekly followed by the idea that possibly all periodicity may be avoided or suppressed by etther or both of two ways (1) By using constantlength keyng units to encipher variable-length plain-text groupings or (2) by using variablelength keymg units to encipher constant-length plain-text groupings
b The student at once realizes also that the periodicity exhibited by repeating-key ciphers of the type studied in the preceding text is of a very smple character There, successive letters of the repetzitive key were applied to successive letters of the text In respect to the employment of the key, the cryptographic or keying process may be said to be constant or fixed in character This terminology remains true even if a single keying unit serves to encipher two or more letters
at a time, provided only that the groupings of plain-text letters are constant in length For example, a single key letter may serve to encipher two successive plan-text letters, if the key is repetitive in character and the message is sufficient in length, perioducity will still be manifested by the cryptogram and the latter can be solved by the methods indicated in the preceding text ${ }^{1}$ Naturally, those methods would have to be modffied in accordance with the specific type of
grouping involved In this case the factorng process would twice that of the real length But study of the frequency distributose an apparent key length the 1st and 2 d distributions were smimar, the 3d and 4the the 5th and 6th, and soon show that upon the length of the key The logical step is therefore to combin the and dependang parss and proceed as usual
c In all such cases of encıpherment by constant-length groupings, the apparent length of the period (as found by applying the factoring process to the cryptogram) is a multiple of the eal length and the multiple corresponds to the length of the groupings, that is, the number of plain-text letters enciphered by the same key letter
d The point to be noted, however, is that all these cases are still periodic in character, 3 Effectse keying units and the plan-text groupings are constant in length
3 Effects of varying the length of the plan-text groupings - a But now consider the effects of making one or the other of these two elements varuable in length Suppose that the plain-text Then, even though the key in length and that the keying units are kept constant in length course of encipherment, external be cychic in character and may repeat itself many times in the in plain-text groupings as atself more times that of the cycle applicable to thas varterable and the length of the message is at least two or
b (1) For example, suppose the correspondents
alphabets with the key word SIGNAL, to encipher a mesage the groups as shown below

	I	G	N	A	L	S	I	G	N	A	L	S	I	G
1	12	123	1234	12345	1	12	123	1234	12345	1	12	123	1234	12345
C	0M	MAN	DING	GENER	A	LF	IRS	TARM	YHASI	S	SU	EDO	RDER	SEFFE
Q	UW	UGT	KFAH	UWNWJ	L	HN	ARQ	NGPU	PGNVF	I	TR	OPE	REER	OCBBC
N	A	L	S	I	G	N	A	L	S	I	G	N		
1	12	123	1234	12345	1	12	123	1234	12345	1	12			
C	TI	VET	WENT	YFIRS	T	AT	NO	NDIR	ECTIN	G	${ }_{\text {TH }}$	ATT	1234	12345
L	HS	QHS	WOFZ	KDARQ	N	NU	NM	YIDU		c	\%	U	Lerr	ONES

$\begin{array}{cccccccc}S & I & G & N & \text { A } & \text { L } & \text { S } & \text { I } \\ \text { I } & 12 & 123 & 1234 & 12345 & 1 & 12 & 123 \\ \text { C } & \text { OM } & \text { MAS } & \text { WITC } & \text { HBOAR } & \text { D } & \text { SC } & \text { OMM } \\ \text { Q } & \text { UW } & \text { UGO } & \text { RFUL } & \text { TZMAJ } & \text { I } & \text { AQ } & \text { UWW }\end{array}$

Cryptogram

QUWUG	TKFAH	UWNWJ	LHNAR	QNGPU	PGNVF	ITROP	ERFER
OCBBC	LHSQH	SWOFZ	KDARQ	NNUNM	MYIDU	OQZKF	CNZNU
UWPWL	EXYHT	QUWUG	ORFUL	TZMAJ	IAQUW	W.	

${ }^{1}$ In this connection, see Section III, Malitary Cryptanalysis, Part IL,
(2) The cipher text in this example (Fig 1) shows a tetragraphic and a pentagraphic repetition The two occurrences of QUWUG ($=$ COMMA) are separated by an interval of 90 letters, the two occurrences of ARQN ($=$ IRST) by 39 letters The former repetition (QUWUG) it will be noted, is a true periodic repetition, since the plan-text letters, therr grouping, and the key letters are identical The interval in this case, if counted in terms of letters, is the product of the keyng cycle, 6 , by the groupmg cycle, 15 The latter repetition (ARQN) is not a true periodic repetition in the sense that both cycles have been completed at the same point as is the case in the former repetition It is true that the cipher letters ARQN, representing IRST both times, are produced by the same key letters, I and G, but the enciphering points in he grouping cye are dfferent in the two case R in

pecially from the point of view of the interacting cycles which brought them about, it wall be especially from the point of view of the interacting cycles which brought them about, it will be
seen that counting according to groupings and not according to single letters, the two pentagraph seen that counting according to groupangs and not according to single letters, the two pentagraphs
QUNUG are separated by an interval of 30 groupings
Or, if one prefers to look at the matter in QUe light of the keying cycle, the two occurrences of QUWUG are separated by 30 key letters Since the key is but 6 letters in length, this means that the key has gone through 5 cycles Thus, the number 30 is the product of the number of letters in the keyng cycle (6) by the number of different-length groupings in the grouping cycle (5) The interaction of these two cycles may bo conved of as patakng of the nature of two gears which are in mesh, one driven by the other One of these gears has 6 teeth, the other 5, and the teeth are numbered If the two gears are adjusted so that the "number 1 teeth" aie adjacent to each other, and the gears are caused to revolve, these two teeth will not come together again until the larger gear has made 5 revolutions and the smaller one 6 During this time, a total of 30 meshings of individual teeth will have occurred But smce one revolution of the smaller gear ($=$ the grouping cycle)
 0, when ita in term of letters , when stated in terms of letter
d The two occurrences of the other repetition, ARQN, are at an interval of 39 letters, but in terms of the number of intervening groupings, the interval is 12 , which is obviously two tumes the length of the keying cycle In other words, the key has in thes case passed through 2 cycles e In a long message enciphered according to such a scheme as the foregomg there would be many repetitions of both types discussed above (the completely periodic and the partially periodic) so that the cryptanalyst might encounter some difficulty in his attempts to reach a solution, ospecially if he had no information as to the basic system It is to be noted in this connection that if any one of the groupngs exceeds say 5,6 , or 7 letters in length, the scheme may give itself away rather easily, sunce it is clear that withn each grouping the encupherment is structly monoalphabetic Therefore, in the event of groupings of more than 5 or 6 letters, the monoalphabetic equivalents of tell-tale words such as ATTACK, BATTALION, DIVISION, ete, would stand out The system is most efficacious, therefore, with short groupings
f It should also be noted that there is nothing about the scheme which requires a regularity in the grouping cycle such as that embodied in the example A lengthy groupng cycle such as hemple the number of dots and lashes in the International Morse sugnts for the lters compoing the phr DECLARATION OF TNDEPENDENCE mught be used Thus, A(has 2, B (\ldots) has 4, and so on Hence

The grouping cycle is $3+1+4+4+2$, or 60 letters in length Suppose the same phrase is used as an encipherng key for determinng the selection of cipher alphabets Since the phrase contans 25 letters, the complete period of the system would be the least common multiple of 25 and 60 or 300 letters Thus system might appear to yueld a very high degree of cryptographnc security But the student will see as he progresses that the security is not so hugh as 4. Primary and secondery to to be
of the complete period in a system such as the foriods - a It has been noted that the length of the complete period in a system such as the foregoing is the least common multiple of the ongth of the two component or interacting periods In a way, therefore, since the component periods constitute the basic element of the scheme, they mare be designated as the basic or primary periods These are also hudden or latent peilods The apparent or patent period, that is, the cupher machmes there may be more than two primary periods which interact to produce of resultant period, also, there are cases in which the latter may interact with another puinery period to produce a tertiary period, and so on The final, or resultant, or apparent period is th one which is usually ascertained first as a result of the study of the intervals between rapis This may or may not be bike dow a b Although a solutioken down into its component primary periods
nto its component primary periods, the reading of without breaking down a resultant period stem of aecret pimary periods, the reading of many messages pertainung to a widespread ovel, that is to communication is much facilitated when the analysis is pushed to ats lowest arms This may prolve there the final cryptographac scheme has been ieduced to 1ts sumplest uccessive cryptogranic strata

Section II
SOLUTION OF SYSTEMS USING CONSTANT-LENGTH KEYING UNITS TO ENCIPHER VARIABLE-LENGTH PLAIN-TEXT GROUPINGS, I
Introductory remorls
Aperiodice enoipherment produced by groupings according to word lengths
Solution when dreet standard cipher alphabcts art employed
Solution when roversed standard eiphcr alphabets are employed Solution when roversed standa
Commants on fortgurg casce

5. Introductery remarks - a The system descriled in p.i-agraph 3 above is obriously not to be classified as aperiodic ir nature, despite the injection of a rainable facior which in that case was bascd upon rregulantr in the length of one of the two clements involved in poly alphabetic substitution The variable factor was there subject to a law which in itself was poriodic in character
b To make such a syatem truly aperiode in character, by claborating upon the basic scheme for producirg valable-lensth plam-text groupingo, would be possible, but mpractical For example, using the same methed as is \S iven in paragraph $3 f$ for determinng the lengths of the groupings, one might employ the text of a look, and if the litter is longer than the message to be enciphered, the crvptogram would certannly show no periodicity as regards the intervals would not be very practical for regular plentiful IIowerer, as already wdicated, such a schom for reasons which are no doubt apparent The book would have to be safeguarded as would a code, enciphering and decipherng would be quite slow, cumbersome, and subject to erro and, unlers the same key teat were used for all messages, methods or maicators would have to be adopted to show exactly where encipherment begins in each message a simpler method for producing constantly changing, aperiodic plain-text groupings therefore, is to be sought

6 Aperiodic encrpherment produced by groupings according to word lengths - a The simplest method for producing aperiodic plain-text groupings is one which has doubtless long ago presented itself to the st ident, vnz, encipherment according to the actual word lengths of the mersage to be enciphered

Although the average number of letters composing the words of any alphabetical language is farly constant, successive words comprising plann text vary a great deal in this respect, and this variation is subject to no law ${ }^{1}$ In telegraphic English, for example, the mean length of words is 52 letters, the words may contan from 1 to 15 or more letters, but the successi
words vary in length in an extremely irregular manner, no matter how long the text may be
ds vary in length in an extremely irregular manner, no matter how long the text may be enciphered by each key letter of a repetitive key commends itself to the mexpenienced cryptog rapher as soon as he comes to understand the way in which repeating-key ciphers are solved If there is no periodicity in the cryptngrams, how can the letters of the cipher text, written in ${ }^{1}$ It is true, of course, that the differenees betucen two writers in reqpect to the lengths and characters of the words contained in their personal vocabrlanics are oftrn m mirkrd and can br measurcd Thess d ferencees
 Chicago Pross, Chicago, 1927

5 -letter groups, be distributed into their respective monoalphabets? And if this very first step mpossible, how can the cryptograms be solved?
hetorical questions, the solution of this case is really qure employed - a Despite the foregoing rhetorical questions, the solution of this case is really quite simple It merely involves a modification of the method given in a previous text, ${ }^{2}$ wherein solution of a monoalphabetic cipher
employing a direct standard alphabet is accomplished by employing a direct standard alphabet is accomplished by completing the plan-component
sequence sequence There, all the words of the enture message come out on a single generatrix of the
completion diagram In the present case, since the individual, separate words of a message are enciphered by different key letters, these words will reappear on dofferent generatrices of the duagram All the cryptanalyst has to do is to pick them out He can do this once he has found a good starting point, by using a hittle imagination and following clues afforded by the context
b An example will make the method clear The following message (note its brevity) has been intercepted

TRECS YGETI LUVWV IKMQI RXSP
SVAGR XUXPW VMTUC SYXGX VHFFB LLBHG
c Submitting the message to routine study, the first step is to use normal alphabet strips and try out the possibility of direct standard alphabets haring been used The completion diagram for the first 10 letters of the message is shown in figure 2
a Despte the fact that the text does not all reappear on the first three words of the messe are easly found CAN YOU GET The key letters may be sought in the usual manner and are found to be REA One may proceed to set up the remaing are found the message on sliding normal alphabets, or one may assume various keywords such as READ REAL, REAM, etc, and try to continue the decipherment in that way The former method is easier The completed solution is as follows

$$
\begin{array}{ccccccc}
R & E & A & D & E & R & S \\
\text { CAN } & \text { YOU } & \text { GET } & \text { FIRST } & \text { REGIMENT } & \text { BY } & \text { RADI }
\end{array}
$$

$\begin{array}{lllllll}\text { CAN } & \text { YOU } & \text { GET } & \text { FIRST } & \text { REGIMENT } & \text { BY } & \text { RADIO } \\ \text { TRE } & \text { CSY } & \text { GET } & \text { ILUVW } & \text { VIKMQIRX } & \text { SP } & \text { JSVAG }\end{array}$
$\begin{array}{ccccc}D & I & G & E & S\end{array}$
RXU XPWVM TUC SYX GX COMMISSION
e Note the key in the foregoing case It is composed of the successive key letters of the phrase READERS DIGEST
f The only difficult part of such a solution is that of making the first step and getting a start on a word If the words are short it is rather easy to overlook good possiblities and thus spend some time in frutless searching However, solution must come, if nothing good appears at the beginning of the message, interior of the cryptogram or a the end
${ }^{2}$ Milutary Cryplanalysss, Part I, Par 20
TRECSYGETI
USFDTZHFUJ VTGEUAIGVK XVIGWB GWL XWIGWCKIXM ZXKIYEMKY
 AYLJZFNLAP

$B Z M K A G O M B O$ | BAKKAGMBQ |
| :--- |
| CANLBHNCR | | CANLBHPNCR |
| :--- |
| D OMCIOODS | ECPNDJRPET FDQOEKSQFU GERPFLTRGV HFSQGMUSHW IGTRHNVTIX JHUSIOWUJY KIVTJPXVKZ LJWUKQYWLA MKXVLRZXMB NLYWMSAYNC OMZXNTBZOD PNAYOUCAPE QOBZPVDBQF RPCAQWECRG SQDBRXFDSH Ftaver 2

8. Solution when reversed standard clpher alphabets are employed -It should by this time hardly be necessary to indicate that the only change in the procedure set forth in paragraph $7 c, d$ in the case of reversed standard cipher alphabets is that the letters of the cryptogram must be converted into their plam-component (direct standard) equivalents before the completion sequence is applied to the message
9. Comments on foregoing cases - a The foregoing cases are so simple in nature that the detaled treatment accorded them would seem hardly to be warranted at this stage of study detaled treatment accorded them would seem hardly to be warranted at this stage of study
However, they are necessary and valuable as an introduction to the more complicated cases to follow
b Throughout this text, whenever encipherment processes are under discussion, the pair of enciphering equations commonly referred to as characterizing the so-called Vigenere method will be understood, unless otherwise indicated This method involves the parr of enciphering equations $\theta_{1 / 1}=\theta_{k / 2}, \theta_{p / 1}=\theta_{e / 2}$, that is, the index letter, which is usually the initial letter of the to be enciphered is sought on the plam component and its equivalent is the letter opposite it on the crpher component ${ }^{3}$
c The solution of messages prepared according to the two preceding methods is particularly easy, for the reason that standard cipher alphabets are employed and these, of course, are derived from known components The slgnficance of thas statement should by this time be quite obvious to the student But what if mixed alphabets are employed, so that one or both of the components upon which the cupher alphabets are based are unknown sequences? The simple procedure of completing the plain component obviously cannot be used Since the messages are polyalphabetic in character, and since the process of factormg cannot be applied, it would seem that the solution of messages enclphered in different alphabets and according to word lengths would be a rather difficult matter However, it will soon be made clear that the solution is not nearly so difficult as first impression might lead the student to magine
${ }^{2}$ See in this connection, Military Cryptanalygis, Part II; Section II, and Appendix 1

Section III

SOLUTION OF SYSTEMS USING CONSTANT-LENGTH KEYING UNITS TO ENCIPHER VARIABLE-LENGTH PLAIN-TEXT GROUPINGS, II
Solution when the origual word lengths are retaned in the cryptogram Solution when other types of alphabets are employed Isomorphism and its mppoitance in eryptanaly tics \qquad ---Illustration of the appluation of phenomena of 1 somorphism in solving a cryptogiam 10 Solution whe onginal word lengths are retained in the cryptogram - a This case will be discussed not because it is encountered in practical military cryptography but because it affords a good introduction to the case in which the orignal word lengths are no longer in evidence in the cryptogram, the lattor appearing in the usual 5 -letter groups
b Reference is made at this point to the phenomenon called idiomorphism, and its value in connection with the application of the principles of solution by the "probable-word" method as explained in a provious text ${ }^{1}$ When the original word lengths of a message are retained in the cryptogram, there is no difficulty in searching for and locating idiomorphs and then making comparisons between these idiomorphe sequencos in the message and special word patterns set forth in lists main taned for the purpose For example, in the following message note the underlned groups and study the letters within these groups

Message

XIXLP EQVIB VEFHAPFVT RT XWK PWEWIWRD XM NTJCTYZL OAS XYQ ARVVRKFONT B H SFJDUUXFP OUVIGJPF ULBFZ RV DKUKW ROHROZ

> ldiomonphic Srquences

(4) R OHRO Z
c Reference to lists of words commonly found in military text and arranged according to their idiomorphic patteins or formulae soon gives suggestions for these cipher groups Thus
(1) PWVWIWRD
(3) SFJDUUXFP
(2) ARVVRKFONT B $\xrightarrow{A T}$ T C I ONS
(4) ROHROZ $\begin{array}{r}0 \mathrm{CLOC} \\ \hline\end{array}$
d With these assumed equivalents a reconstruction skeleton or dagram of cipher alphabets (corming a porition of a quadncular table) is established, on the hy pothesis that the cipher alphabets have been deuved from the slidng of a muved component aganst the normal sequence First it is noted that since $O_{p}=R_{\mathrm{e}}$ both in the woid DIVISION and in the woid OCLOCK their cipher equivalents must be in the same alphabet The reconstruction skeleton is then as follows

$\begin{aligned} & \text { Division, } \\ & \text { o'clock_----(1) } \end{aligned}$	A	B	C	D	E	F	G		I	K	K	M	N	0	P	Q	R	S	T		U	v	X		Y	z
			0	P					V	Z	2		D	R				I				E				
Battahon ----(2)	R	A							F				N					T	V	\checkmark						
Artullery -----(3)	S				x				D										J						P	

Noting that the interval between 0 and R in the first and second alphabets is the same, drect symmetry of position is assumed In a few moments the first alphabet in the skeleton becomes as follows

f The key word upon which the mixed component is based is now not dufficult to find HYDRAULIC
(1) To decipher the entire message, the sumplest procedure is to convert the cipher letters into their plain-component equivalents (setting the HYDRAULIC Z sequence aganst the normal alphabet at any point of comncidence) and then completing the plan-component sequence, as usual The words of the message will then reappear on different generatrices The
key letters may then be ascertained and the solution completed Thus, for the first three words, the diagram is as follows

$\frac{\mathrm{XIXLP}}{}$	EQ V I B	VEFHAPFVT
YHYGS	K TWHJ	WKLAESLWV
ZIZHT	L U X I K	XLMBFTMXW
AJAIU	M V Y J L	YMNCGUNYX
BKB J V	NWZKM	ZNODHVOZY
CLCKW	0 XALN	AOPEIWPAZ
DMDLX	PYBMO	BPQFJXQBA
ENEMY	Q ZCNP	CQRGKYRCB
$\mathrm{A}_{\mathrm{p}}=\mathrm{S}_{\text {。 }}$	RADOQ	DRSHLZSDC
	S BEPR	ESTIMATED
	TCFQS	$\mathrm{A}_{\mathrm{p}}=\mathrm{P}_{\text {o }}$
	U DGRT	${ }_{p}-P_{0}$
	VEHSU	
	W FITV	
	X G J U W	
	Y H K V X	
	Z ILWY	
	A J M X Z	
	BKNYA	
	C L 0 ZB	
	D M P A C	
	ENQBD	
	FORCE	
	$\mathrm{A}_{\mathrm{p}}=\mathrm{U}_{\text {o }}$	

Ftadzx 4
(2) The key for the message is found to be SUPREME COURT and the complete message is as follows

| SOLUTION | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S | U | P | R | E | M | E | C | 0 | U |
| ENEMY | FORCE | ESTIMATED | AS | ONE | DIVISION | OF | INFANTRY | AND | TWO |
| XIXLP | EQVIB | VEFHAPFVT | RT | XWK | PWEWIWRD | XM | NTJCTYZL | OAS | XYQ |
| R | T | S | | U | P | R | E | M | |
| BATTALIONS | OF | ARTILERY | MARCHING | NORTH | AT | SEVEN | OCLOCK | | |
| ARVVRKFONT | BH | SFJDUUXFP | OUVIGJPF | ULBFZ | RV | DKUKW | ROHROZ | | |

h In case the plain component is the rera nom
 is the reversed normal sequence, the procedure is no different

 after the coregong, except that in the completion diagram the reversed sequence is employed ${ }_{i}$ No doubt thers have been converted into ther plain-component equivalentscomponent has been student realizes from his previous work that once the primary mixed component has been recovered the latter becomes a known sequence and that the solution of individual messages are different, then becomes a smmple alphabets, even though the keys to

11 Solution when other types of alphabets are employed - a The foregong examples nvolve the use either of standard cipher alphabets or of mixed cipher alphabets produced by the slding of a muxed component against the normal sequence There is, however, nothing about the general cryptographic scheme which prevents the use of other types of derived, interrelated, or secondary muxed alphabets Cipher alphabets produced by the slidng of a

b The solution of such cases involves only slight modficications in procedure, namely, those onnected with the reconstruction of the primary components The student should be in a解 difficulty what he has learned about the principles of indrect symmetry of position in the solution of cases of the kind described
c The solution of a message prepared with muxed alphabets derived as indicated in subparagraph b, may be a difficult matter, depending upon the length of the message in question It might, of course, be almost impossible if the message is short and there is no background for the application of the probable-word method But if the message is quite long, or, what is more probable with respect to miltary communications, should the system be used for regular traffic, so that there are avalable for study several messages enclphered by the same set of alphabets, then the problem becomes much easier In addition to the usual steps in solution by the probable-word method, guded by a search for and identification of idiomorphs, there is the help that can be obtained from the use of the phenomena of csomorphism, a study of which forms the subject of discussion in the next paragraph
12. Isomorphism and its importance in cryptanalytics. $-a$ The term idiomorphism is familiar to the student It designates the phenomena arising from the presence and positions of repeated letters in plam-text words, as a result of which such words may be classified according, to their compositions, "patterns," or formulae The term $2 s o m o r p h 2 s m$ (from the Greek "isos" meanng "equal" and "prome meang "form the xistence of two or more idomorphs wh identical
b
RRANT LETTERS, ARRANT, LEEAERS, and also be are isomorphic If enciphered monoalphabetically, their cipher equivalents would also be 1somorphic in general, isomorphism is a phenomenon of
monoalphabeticity (either plain or cipher), but there are instances wherein it is latent and can be made patent in polyalphabetic cryptograms
c In practical cryptanalysis the phenomena of isomorphism afford a constantly astonishing source of clues and adds in solution The alert cryptanalyst is always on the lookout for situations in which he can take advantage of these phenomena, for they are among the most interesting and most important in cryptanalytics
13. Illustration of the use of 1somorphism -a Let us consider the case discussed under paragraph 10, wherem a message was enciphered with a set of mixed cipher alphabets derived from shding the key word-mixed primary component HYDRAULIC XZ against the normal sequence Suppose the message to be as follows (for simphcity, orignal word lengths are retained)

Cryptogram

VCLLKIDVSJDCI ORKD CFSTV IXHMPPFXU EVZZ FK NAKFORA DKOMP ISE CSPPHQKCLZKSQ LPRO JZWBCX HOQCFFAOX ROYXANO EMDMZMTS TZFVUEAORSLAU PADDERXPNBXAR IGHFX JXI
b (1) Only a few minutes inspection discloses the following three sets of isomorpha

(2) Without stopping to 1 efer to word-pattern lists in an atiempt to identify the very triking 1diomorphs of the first set, let the student pioceed to build up partial sequences of equivalents, as though he were dealing with a case of mdirect symmetiy of position Thus From isomorphs (1) (a) and (1) (b)

$$
V \approx C, C \cong S, L \propto P, K \cong H, I \cong Q, D \propto K, S=L, J \nsim Z,
$$

from which the following partial sequences are constructed
(a) VCSLP (b) DKH (c) IQ (d) JZ

From isomorphs (1) (b) and (1) (c)

$$
C \cong P, S \cong A, P \cong D, H \propto E, Q \approx R, K \approx X, L \backsim N, Z \approx B,
$$

from which the following parinal sequences are constructed

$$
\begin{array}{lllllll}
\text { (e) CPD } & \text { (f) } \mathrm{SA} & \text { (g) } \mathrm{HE} & \text { (h) } \mathrm{QR} & \text { (i) } \mathrm{KX} & \text { (j) LN } & \text { (k) } \mathrm{ZB}
\end{array}
$$

From isomorphs (1) (a) and (1) (c)

$$
V \approx P, C \cong A, L \cong D, K \cong E, I \cong R, D \cong X, S \cong N, J \cong B,
$$

from which the following partial sequences are constructed

$$
\begin{array}{lllll}
\text { (l) LDX (m) VP } & \text { (n) CA } & \text { (o) } \mathrm{KE} & \text { (p) IR } & \text { (q) SN }
\end{array} \text { (r) JB }
$$

Noting that the data from the three isomorphs of this set may be combined (VCSLP and CPD make VCSLP D, the latter and LDX make VCSLP $D \quad X$), the following sequences are established

c (1) The fact that the longest of these chams consists of exactly 13 letters and that no additions can be made from the other two cases of isomorphism, leads to the assumption that a "half-chan" is here disclosed and that the latter represents a decimation of the orignal primary
 s The symbol \approx is to be read "is equivalent to"
which gives the sequence the appearance of being the latter half of a keyword-mixed sequence running in the reversed drection, let the half-cham be reversed and extended to 26 places, as follows
(2) The data from the two partial chains (JZ B and IQ R) may now be used, and the letters inserted into their proper positions Thus
(3) The sequence H D RA L I C soon suggests HYDRAULIC as the key word When the mixed sequence is then developed in full, complete corroboration will be found from the data of momorphs 2 (a) (b) and 3 (a) (b) Thus
(4) From idiomorphs (2) (a) and (2) (b), the interval between H and $I_{\text {is }} 7$, it is the same for 0 and X, Q and H, C and M, etc From idiomorphs (3) (a) and (3) (b) the interval between R and N is 13 , it is the same for O and A, Y and K, etc
d The message may now be solved quite readlly, by the usual process of converting the cupher-text letters into their plain-component equivalents and then completing the plain component sequences The solution is as follows
[Key STRIKE WHILE THE IRON IS (HOT?)]

 $T 1 H \quad E \quad I$
 JZWBCX HOQCFFAOXROXXANOEMDMZMIS
 SWITCHBOARDNOCOMMENICATIONAFTERTEN e (1) In the foregoing lllustration the steps are particularly simple because of the following carcumstances
(a) The actual word lengths are shown
(b) The words are enciphered monoalphabetically by different alphabets belonging to a set of secondary alphabets
(c) Repetitions of plain-text words, enciphered by dufferent alphabets, produce isomorphs nd the lengths of the isomorphs are defintely known as a result of circumstance (a)
(2) Of these facts, the last is of most interest in the present connection But what if the actual word lengths are now shown, that is, what if the text to be solved is intercepted in the usual 5-letter-group form?

135822-80-2

Section IV

SOLUTION OF SYSTEMS USING CONSTANT
 VARIABLE-LENGTH PLANT-LENGTH KEYING UNITS TO ENCIPHER

 VARIABLE-LENGTH PLAIN-TEXT GROUPINGS, III
General remarks

14. General remariss-a The cases described thus far are pasticularly easy to solve because the cryptanalyst has before him the messages in ther true or orggnal word lengths because miltary cryptography this is seldom or never the case The problem is thereforths But in what more dufficult by reason of the fact that there is nothing to indicate defintore made someencipherment by successive keyletters However, the solution merely necessitates more ex-
permmentation in this case than permentation in this case than in the preceding The cryptanalyst must take careful note of
repetitions which may serve to "hlo will be able to find and identify cort out" or delimit words, and hope that when this is done he terns, such as thase noted above If there is plents laving famuliar idiomouphac features or patto permit of employng this entering wedge text, repetitions will be sufficient in number b Of course, if any sort of stereng wedge
or endings of the messages, the matter of assuming values for sequed, especially at the begunnongs and affords a quck solution For example, suppose that os sequences of cipher letters is easy found that many messages begm with the expression REFERRING TO YOUR NUMBER has been Having several messages for study, the selection of one which begins with such
found the word REFERRING by the word REFERRING is a relatively sumple matter, and common NUMBER, the solution is probably well fand degree of certanty one can add the words TO YOUR c (1) Take the case discussed in paragraph
inducated because the message is transmatted in, but assume that word lengths are no longer ascertainng the exact length of sequences which are usomorphetter groups The process of termed, "blocking out ssomorphs" becomes a more dufficult matter, and the process is briefly rather tenuous threads of reasoning For example, take the illustrative must often rest upon with and let it be assumed thatit was arranged in 5 -lettergroups

L	FKNAK	FORAD	KOMPI	$\begin{aligned} & \text { TVIXH } \\ & \text { SECS } \end{aligned}$	
	${ }_{2}$	ZWBCX	HOQPF	SECSP	$\begin{aligned} & P \\ & 0 \end{aligned}$
	$Z{ }^{\text {M }}$		AOQCF		
	I				

(2) The detection of isomorphrims now becomes a more difficult matter There is no
special trouble in prcking out the following thiee isomorphc sequen

1) V C L L K I DV
(2) C S P L K I D V S J DCI
(3) PADPEQKCLZKSQ
(14)
since the first one happens to be at the begnning of the message and ats left-hand boundary, or "head," is marked by (or rather, conncides with) the beginnung of the message By a fortunate crecumstance, the ryght-hand boundary, or "tall," can be fixed just as accurately That the repetition extends as far as induated above 18 certamn for we have a check on the last column
I, Q, R If an addtional column were added, the letters would be $0, L, I$ I, Q. R If an addtional column were added, the letters would be $0, L$, I Since the second
letter has prevously appeared whle the first and thrd have not, a contradction results and the new column may not be included

If, however, none of the three letters 0, L, I had previously appeared, so that there could be no means of getting a check on their correctness, it would not be possible to block out or ascertain the extent of the isomorphusm in such a case All that could be sald would be that t seems to mulude the first 13 letters, but it mught contunue further
therr full extent is not usull diculty or even the impossibility of blockng out the ssomorphs to not to identify words but to obtan crypr After all, the cryptanalyst uses the phenomenon For example, how many data are lost when the illustrative message of subparagraph $13 a$ is rewntten in 5 -letter groups as in subparagraph $14 c$ (1)? Suppose the latter form of message be studied for 1 somorphs

VCLLK	IDVSJ	DCIOR	KDCFS	TVIXH	MPPFX	UEVZZ
FKNAK	FORAD	KOMPI	SECSP	PHOKC	LZKSQ	LPROJ
ZNBCX	HOQCF	FAOXR	OYXAN	OEMDM	ZMTST	ZFVUE
AORSL	AUPAD	DERXP	NBXAR	IGHFX	JXI	

(2) If the underscored sequences are compared with those in the message in subparagraph $13 a$, it will be found that only a relatively small amount of unformation has been lost Certannly not enough to cause any diffic ulty have been lost in this case, for all the data necessary for the latter are identical in length in both cases Only the head and tail letters of the second parr of isomorphuc sequences are not included in the underscored sequences in the 5 -letter version of the message The thard parr of ssomorphe sequences shown in paragiaph $13 b$ does not appear in the 5 -letter version since there is only one repeated letter in this case In long messages or when there are many short messages, a study of 1somorphsm will disclose a sufficient number of partual isomorphs to give data usually sufficient for puiposes of alphabet reconstruction
$e \mathrm{It}$ should be noted that there is nothung about the phenomenon of isomorphism which restricts its use to cases in which the cupher alphabets are secondary alphabets resulting from the shdung of a muxed component against the normal It can be useful in all cases of interrelated econdary alphabets no matter what the basis of their denvation may be
f In subsequent studies the mportant role which the phenomenon of isomorphism plays n cryptanalytics will become more apparent When the traffic is stereotypic in character even to a slight degree, so that isomorphism may extend over several words or phrases, the phenomenon becomes of highest importance to the cryptanalyst and an extremely valuable tool in his hands

15 Word seperators $-a$ One of the pratical dufficulties in employing systems in which the keying process shifts according to word lengths is that in handlung such a message the decryptoraphing clerk is often not certaun exactly when the termination of a word has been reached, and thus time is lost by him For mnstance, while decryptographing a word such as INFORN ley letter or not The word might be INFORMS, INFORMED, INFORMING, INFORMAL, INFOR-
maition, ete The past tense of verbs, the plural of nouns, and terminations of various sorts capable of benag added to word roots would give rise to dufficulties, and the latter would be especially troublesome if the messages contamed a few telegraphie errors Consequently, a word by an mfrequent letter such as Q or X, and enciphering the letter In such usage these letters are called word separators
b When word separators are employed and this fact is once discovered, their presence $1 s$ of as much and to the cryptanalyst in his solution as it is to the clerks who are to decryptograph the messages Sometumes the presence of these word separators, even when enciphered, and or makes possible the blockng out of isomorphs
ard lemaiks on foregoing systems -a The systems thus far are markedly urregular up word-length enclpherment using different cipher alphabets Words umparted to seglar in regard to this feature of their construction, and thus aperiodicity is mparted to such cryptograms But vanations in the method, aumed at making the latter somewhat more secure, are possible Some of these variations will now be discussed
b Ynstead of encipherng accordng to natural word lengths, the irregular groupngs of the (in the normal sequence) of earh key letter be used to control the number of letters enciphere by the successive cupher alphabets Dependng then upoa the compostion of the key word or key phrase, there would be a varynng number of letters encpphered in each alphabet If the key word were PREPARE, for unstance, then the first cupher alphabet would be used for 1 $(P=16)$ letters, the second cupher alphabet, for $18(\approx R)$ letters, and so on Monoalphabettic encipherment would therefore allow plenty of opportunnty for toll-tale word patterns to manufes be achueved rather rapidly Of course, all types of cipher alphabets may be employed in this and the somewhat smmiar schemes described
c If the key is short, and the message is long, periodicity will be manfested in the cryptogram, so that it would be possible to ascertaan the length of the bastc cycle (in thus case thelength of the key) despite the urrogular groupings in encipherment The determination of the length period would not be clearly evident because of the presence of repetitions which are not periodic in their ongen For example, suppose the word PREPARE were used as a key, each koy letter being employed to encupher a number of letters corresponding to ats numerical value in the normal sequence It is clear that the length of the basic period, in torms of letters, would here be the sum of the numerncal values of $P(=16)+R(=18)+E(=5)$, and so on, totalling 79 letters But because the key atself contans repeated letters and because encipherment by each
key letter is monoalphabetic there would be plenty of cases in which the first letter P would encupher the same or part of the same word as the second letter P, producing repetitions in the cryptogram The same would be true as regards encupherments by the two R's and the two E's in thas key word Consequently, the bastc period of 79 would be dsstorted or masked by aperiodic repetitions, the intervals between which would not be a function of, nor bear any relation to, the length of the key The student will encounter more cases of this kund, in which attributable to the fundamental cycle The experrenced cryptanalyst is on the lookout for phenomena of this type, when he finds in a polyalphabetic clpher plenty of repetitions but with no factorabie constancy which leads to the disclosure of a short period He may conclude, then, either that the cryptogram involves several primary periods which meteract to produce a long resultant period, or that it muvolves a farrly long fundamental cycle within which repetitions of a
pemodic ongin are prosent and obscure the phenomena manifested by repetitions of a periodic ongin (1) aly palphabence encupherment of ranable-length (1) A logical extension of the principle of polyanhan groupings rarely exceed 4 lettors, so plain-text groupngs is the case in whin for only a very short tume, thus breaking up what might therwise appear as farly long repetitions in the cupher text For example, suppose the lettera follows
(2) Suppose that a letter in group 1 means that one letter will be enciphered, a letter in (2) Suppose that a letter in group 1 med, and so on Supposs, nest, that a rather lengthy group 2, were used as a key, for example, PREPARED UNDER THE DIRECHos, finally, that each SIGNAL OFFICER FOR USE WITH ARMY EXIENSION COU cerher alphabet to be used, but also letter of the key were used not only to semphered by the selected alphabet, according to th to control the number or scheme outhned above Such an enciphering scheme, comng thent, would yreld the follown clpher com

Key.-.
lain-..-
roupng
Key.-.
Plann. \qquad FIR S P DIV IS I O NW ILL A DVANC EAT F IV

Clpher

(3) Here it will be seen that any tendency for the formation of lengthy repentions would be counteracted by the short groupings and quck shiftung of alphabots The first tume the word DIVISION occurs it is enciphered as THJGVFXM, the second exame the same sequence of key as RPRNPCKS Before DIVISION can be twice encipheren between the two occurrences of the letters, an interval word key letter P would begun the encupherment of DIV are but one three possible encipherments will yeld exactly the same sequence or ere such as to place two second time as was obtained the first tume Cor cen shown below, their encipherments would occurrences of

$$
\begin{aligned}
& \text { be as follows }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\text { STI ON } & \ldots . \\
\text { T P NMM... }
\end{array}
\end{aligned}
$$

Although the wotd DIVISION, on its second appaarance, begins but one letter beyond the place where it begins on its first appearance, the capher equivalents now agree only in the first two letters, the fourth, and the last letters Thus

$\frac{\mathrm{DIVISION}}{\text { THE }}$

e Attention $2 s$ drected to the characteristics of the foregong two encipherments of the same word When they are supermposed, the first two cipher equivalents are the same of the two encupherments, then there is a sangle unterval where the cipher equivalents are dufferent the next cipher equivalent is the same, then follow three intervals with dissimular cipher equivaanly to one or two letters lipequvalent is the same in both cases The repetitions here extend ments yneld only occasional congepetitions can occur only exceptoonally. The two encipher-

f This phenomenon of intermittent conncdences, involving counc inderces of single chacter pairs of letters, or short sequences (rarely ever exceeding pentagraphs) is one of the characters, atres of this general class of polyalphabetic substitution, wheresn the cryptograms commonly nanufest what appears to be a disturbed or distorted periodicity
g From a technical standpoint, the cryptographe principle upon which the foregong system is based has much merrt, but for practical usage it is entirefy too slow and too subject ey were quite lengthy, such a system and were mechanized by machunery, and if the enciphering machunes for accomplushung thus type of substitution will be treated in a subsequent text

Section \mathbf{V}

SOLUTION OF SYSTEMS USING YARIABLE-LENGTH KEYING UNITS TO ENCIPHER CONSTANT-LENGTH PLAIN-TEXT GROUPINGS

Vanable-lergth groupings of the keyng sequence-
Interruptor is a plann-text letter
Solution by superimposition
Interruptor is a empher-text jette
17 Variable-length groupings of the keying sequence - The preceding cases deal with sumple methods of oliminatug or avoiding pentodicity by encypherng varnable-length grouping of the plan text, using constaut-length heying units In parngraph $2 a$, however, it was pom out that penoduty can also be suppressed by 4pplyngsts in arregularly interrupting the keying stant-length plair-text groups one such mength, and recomrieneing it (from its intial point) sequence, if the latter is of a himited or fixed engtan, and becomes equivalent to a serres of keys of dufferent lengths Thus, the hey phase BUSINESS MACHINES may be expanded to a series of rregular-length keyng sequences, such as BUSI/BUSIN/BU/BUSINESNM BUS Various sehemes or prarrangements for madicalug or dopted Three me hods will be me
18 Methods of interrupting a cyclic keyng sequence $-a$ There aie many methods of interrupting a keying sequence which is basically cyche, and wheh theretore would give nis perrodicity if not interiered when in somen after the untern uption occurs

(1) The keyng sequence merely sips in keyng sequence may be omitted from tome to time regularly
(3) The keying scquence irregularly alternates in its durection of progression, with or nithout omission of some of 1 ts elements
b Thase methods may, for clarity, be represented graphically as follows Suppose the consts methods may, for clarity, be represented graphically as sequence of 10 elements represented sy mobolly by the sernes of numbers $2,3,10$ Using an asterisk to indseate an interruption, the following may then represent ,2,
, 10 Using an asterisk to indicate an interruption, the following may then repring sequences in the three types mentioned above

Letter No (3) $\begin{aligned} & \text { Key element } \\ & \text { Letter No }\end{aligned}$ \qquad 1-2-3-4-5-*-4 7 - $89101112131415 \quad 16171819 \quad 20$
 9
of the keying sequence, if there were no interruptions in thation in the direction of progression 10 -element keying sequence, for exe no interruptions in the key it would mean merely that a sequence and the matter could then be handled be treated as though it were an 18 -elemen method But if the principles of the handled as though it were a special form of the second the matter may become quites of the second and third method are combined in one system, c If one knous when the interrup
the basic keying cycle in the three cases may be superimposed cycle, then successive sections of

Keying element									
Letter No.-- --.-...--	2	3	4	5	6	7	8	9	10
Letter No--------------------1-1	6	7	4	9					
Letter No.------------------1-1	12	13	1	9					
Letter No	15	16	17	18	19	20			
Letter	22		24	25	26	27	28	29	10
Letter No.									

Obviously if one does not know when or how the interruptions take place, then the successive d The interruption of the cyclic keying sequas indicated above
prearranged plan, and the three basic methods of short mnemomic key as an example
e Suppose the correspondents agree that the interruption in the keyng sequence will take place after the occurrence of a specified letter called an interruptor, ${ }^{1}$ which may be a letter of the place after the occurrence of a specilied letter called an interruptor, ${ }^{\text {, }}$ which may be a letter of the
plaun text, or one of the cipher text, as agreed upon in advance Then, since in either case plain text, or one of the cupher text, as agreed upon in advance Then, since in either case
there is nothing fixed about the time the interruption will occur-it will take place at no fixed intervals-not only does the interruption become quite urregular, following no pattern, but also the method never reverts to one having periodicity Methods of this type will now be discussed in detal
19. Interruptor is a plain-text letter - a Suppose the correspondents agree that the interruption in the key will take place immeduately after a previously agreed-upon letter, say R, occurs in the plam text The key would then be interrupted as shown in the followng example (using the mnemomic key BUSINESS MACHINES and the HYDRAULIC

XZ sequence)
Key-- \qquad BUSINESSMACHI|BUS|BUSI|BUSINE Cupher - B OLYRPJDROJORXKFYXSXDJUPS

Key_- \qquad BUSINESSMACHINESBUUBUSINESNSMCHI Cupher \qquad $\begin{array}{llll}Y \\ I & I & I & L \\ P & Y & F & E\end{array}$
Key.--- BUSI|BUS|BUSINE|BUSIN
Cipher

Cryptogram

BOLYR PJDRO JKXKJ FYXSX DJUPS YIYDP YFXUR AFAEN MJJVB OLYRP JDROJ KXDGD

b Instead of employing an ordmary plaun-text letter as the interruptor, one mught reserve the letter J for this purpose (and use the letter I whenever this letter appears as part of a plamtext word) This is a quite simple variation of the basic method The letter J acts merely as though it were a plam-text letter, except that in thus case it also serves as the interrupto The interruptor is then inserted at random, at the whim of the enciphering clerk Thus

\qquad | BUSINESSMAC | BUSINESSM | BUSINESSMACHINESBUSIN |
| :--- | :--- | :--- |
| TROOPSWILIJ | BEHALTEDJ | ATROADIUNCTIONFIVESIX |

c It is obvious that repetitions would be plentiful in cryptograms of this construction, regardless of whether a letter of high, medium, or low frequency is selected as the signal for key interruption If a letter of high frequency is chosen, repetitions will occur quite often, not be followed by words that are frequently repeated, and common words, but also because it will such interruption, these frequently repeated words will be enciphered by the agan with each alphabets This is the case in the first of the two foregoing examples It is clear for instence that every time the word ARTII ERY appers in the cryptogram the cupher foralents of TILLERY must be the same If the interruptor letter were A_{p} instead of R_{p}, the repetition
${ }^{1}$ Also called at times an "influence" letter because it influences or modifies normal procedure In some cases no infuence or interruptor letter is used, the interruption or break in the keying sequence occurrng after
would include the cupher equvalents of RTILLERY, if it were T_{0}, ILLERY, and so on On the other hand, if a letter of low frequency were selected as the interruptor letter, then the encipherwould would tend to approxmate that of normal repeating-key substitution, and repetitions sis alone
cases, would be irregular, so that intervals between the repetitions, in any of the foregoing inquire, therefore, how one would proceed to solve such be manifested The student may attempt to allocate the letters of a single message into separate monoalphabetic distributions cannot be successful unless the exact locations of the interruptions are known-and they do not become known to the cryptanalyst until he has solved the message, or at least a part of it Thus $1 t$ would appear as though the would-be solver is here confronted with a more or less insoluble dilemma This sort of reasoning, however, makes more of an appeal to the novice in cryptogdilemmas to the experienced cryptanalyst, who specializes in methods of solving cryptographic
e (1) The problem here will be attached upon the usual two hypotheses, and the easier one will be discussed first Suppose the system has been in use for some time, that an original solution has been reached by means to be discussed under the second hypothesis, and that the cupher alphabets are known There remams nnknown only the specific key to messages Examming whatever repetitions are found, an attack is made on the basis of searching for a piobable
word word ARTILLERY is suspected Attempts are made to locate this word, hasing the ofegrch upon the construction of an intelligible hey Begnning with the very first letter of the message the word ARTILLERY is juxtaposed against the cipher text, and the hey letters ascertanged, using the known alphabets, whit he we will assume in this case are based upon the HYDRAULT

XZ sequence sliding aganst the normal Thus
(2) Snce this "key" is certamly not intelligible text, the assumed word is moved one letter o the right and the test repeated, and so on until the following place in the test is reached

$$
\begin{aligned}
& \text { Clipher------ -- ----- S X D J U P S Y I } \\
& \text { Plain------------------- A R T I L L ERY }
\end{aligned}
$$

(3) The sequence BUSINE suggests BUSINESS, moreover, it is noted that the key is intoriupted both times by the letter R_{p} Now the key may be applied to the begmeng of th message, to see if the whole key or only a portion of it has been recovered Thus

$$
\begin{aligned}
& \text { Key.------------------ B U S I N E S S B U S } \\
& \text { Clpher- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AMMUNITIUMT }
\end{aligned}
$$

(4) It is obvious that BUSINESS is only a pait of the bey But the deciphered sequence certanly seems to be the word AMMUNITION When this is tried, the key $1 s$ exteaded to BUSINESS MA Enough has been shown to clarify the procedure
f The foregoing solution is predicated upon the hypothesis that the clpher alphabets are known But what if this is not the case? What of the steps necessary to arrive at the firs solution, before even the presence of an interruptor is suspected? The answer to this question oads to the presentation of a method of attack which is one of the most important and powerfu eeans the cryptanalyst has at his command for unraveling many tnotty problens is colle
20. Solution by suporimpostion - a Bard riod
20. Solution by supermmostion-a Basce proncrples - (1) In solving an ordmary epeating-key cupher the first ctep, that of ascertaining the length of the period, is of no signif (ance in itself it merely paves the way for and makes possible the second siep, which consists
in allocating the letters of the cryptocram into individual monoalphabetic distributions The in allocating the letters of the cryptogram into individual monoalphabetic distributions Th cribed into its periods and is written out in successive lines corresponding in length with that of the period The diagram then consists of a series of columns of letters and the letters in each column belong to the same monoalphabet Another way of lookng at the matter is to concerve of the text as havng thus been tianscribed into supcrimposed pervods in such case the letters in ach column have undergone the same kind of treatment by the same elements (plain and cipher components of the clpher alphabet)
(2) Suppose, however, that the repetitive key is very long and that the message is short, so hat there are only a very few cycles in the text Then the solution of the message becomes difficult, if not impossible, because there is not a sufficient number of superimposable periods to reld monoalphabetic distributions which can be solved by frequency prinsiples But suppose bo that there are many short cryptogr
(a) The letters in the respective columns will all belong to individual alphabets, and
(b) If there is a sufficient number of sur h superimpnsable messages (say $25-30$, for Enclish) hen the froquency distributions applicable to the successive columns of text can be solvedunthout knowrng the length of the key In other words, any difficulties that may have arisen on account of failure or mability to ascertain the length of the period have been circurnvented The second step in normal solution is thus "by-passed"
(3) Furthermore, and this is a vely mportant point, in case an extremely long key is em(a) ard a series of messages begmning at different intinl points are enciphered by such a key this method of solution by supermposition can be employed, provided the messages can be super mposed correctly, that is, so that the letters which fall in one column really belong to one cipher alphabet Just how this can be done will be demonstrated in subsequent paragraphs, but a clue has already been given in paragraph $18 c$ At this point, however, a simple illustration of the method will be givel, using the substitution system discussed in paragraph 19
b Example - (1) A set of 35 messages has been intercepted on the same day Presumably they are all in the same key, and the presence of repetitions between messages corroborates this . The probable-word method m been appled, using standard alphabets, whth no success The messages are then super mposed (Flg 5), the frequency distributions for the first 10 columns are as shown in Figure 6
2 WTEQMXZSYSPRC
3 TCRWCXTBHH
4 EFKCSZRIHA
EFKCSZRIHA
$\mathrm{Y} A N C I H Z N U W$
6 VZIETIRRGX
HCQICKGUON
ZCFCLXRKQW
HWWPTEWCIMJS
EPDOZCLIKS
WTSSOZPZ
WTSSQZPZIE
ZCGGYFCSBG
ZCGGYFCSBG
CWZAOOEMHWTP
CIYGIFBDTVX
EAQDRDNSRCAPDT
YFWCQQBZCWC
WTM
ZCEXQSKUHC
ZCXZKZYDW
$\begin{array}{lll}19 & \text { AFEOJTDTIT } \\ 20 & \text { KPVFQWPKTE }\end{array}$
21 KPAGQWPKTEV
21
22 YHEOCUHMDT
3 CLCPZIKOTH
24 AFLWWZQMDT
25 ZCWAPMBSAWL
26 HFLMHRZNAPECE
27 CLZGEMKZTO
TPYFKOTIZUH ZCCPSNEOPHDYL 0 CIYGIFTSYTLE YTSVWVDGHPGUZ $\mathrm{N} O C A I F B J B L G H Y$
$Z X X F$ ZXXFLFEGJL
ZCT
ZCTMMBZJOO
5 HCQIWSYSBPHCZV

Figuris 5

(2) The 1st and 2d distributions are certannly monoalphabetic There are very marked crests and troughs, and the number of blanks (14) is more than satisfactory in both cases (Let the student at this point refer to Par 14 and Chart 5 of Military Cryptanalysis, Part I) But the 3d, 4th, and remaining distributions appear no longer to be monoalphabetic Note particularly the distribution for the 6th column From this fact the conclusion is drawn that some disturbance in periodicity has been introduced in the cryptograms In other words, although they all start out with the same alphabet, some sort of mterruption takes place so as to suppress
\qquad (3) However, a start on solution may be made by attackng the first two distributions, frequency studies being aided by consideraticrs based upon probable words In this case, since the text comprises only the begmnengs of messages, assumptions for probable words are more
easily made than when words are sought in the minteriors of messages Such common introductory words as REQUEST, REFER, ENEMY, WHAT, WHEN, IN, SEND, etc, are good ones to assume Furthermore, high-frequency digraphs used as the initial digraphs of common words will, of course, manifest themselves in the first two columns The greatest and in this process is, as usual, a familiarity with the "word habits" of the enemy
(4) Let the student try to solve the messages In so dong he wll more or less quickly find the cause of the rapid falling off in monoalphabeticity as the columns progress to the right from the intial point of the messages

21 Interruptor is a cupher-text letter - a In the preceding case a plain-text letter serve as the interruptor But now suppose the correspondents agree that the interruption in the key will take place immediately after a previously-agreed-upon letter, say Q , occurs in the cipher text The key would then be interrupted as shown in the following example

Key_
Plaun. \qquad BUSINESSMACHINESBUSINESSM
Clpher \qquad AMMUNITIONFORFIRSTARTILLE

Klann. BUSTNESSMACHINBUSINESSMACH

Cipher BYSINESSMACHIN|BUSINESSMACH|BU

Key.-- \qquad BUSINESSMACH|BUSINE
Clpher

Chyptogram

BOLYR	P J D R	JKXTP	F Y X S X	BPUUQ	HRNMY
T TXHP	CRFQB	EJFIE	LLBON	QOQVE	CXEOD
FPAZQ	ONUFI	C X X X X			

b In the foregoing example, there are no significant repetitions Such as do occur comprise only digraphs, one of which is purely accidental But the absence of signuficant, long repetitions is itself purely accidental, for had the interruptor letter been a letter other than Q_{0}, then the phrase AMMUNITION FOR, which occurs twice, might have been enciphered identically both
tumes If a short key is employed, repetitions may be plentuful For example, note the fol lowing, in which S_{c} is the interruptor letter

Key--. ain \qquad BANDSBANDSBANDSBANDSBAN|BANDSBANDSB Cipher \qquad FROMFOURFIVETOFOURFIFTEENAMBARRAGE

This last example alue to will be will be repetitions within shoit secticns, and the interval between them will sometimes permit of asce taining the lergth of the kev In suc h shit sec tions, the lettors which intervene between A C B and N nias be elminated in the foregoing example os interruptor letters By lexters of the priciple to the letters intervening between other repetitons, one may more or les quickly asion what letter serves as the interruptor quickly ascertann what hetter serves as the interruptor
"Once the interiuptor lettel has been found, the next step is to break up the message mino "unintorrupted" sequences aud then attempt a solution by superimposition The printhis case the columns of text formed by the supenimposition respects In the first place, in be puiely rionoalpuabetic, whereas in the case of the example in paiagraph 20 , only the very first column is puiely monoalphabetic, the monoalphabeticity falling off very iapidly with the 2d, 3d, columns Hence, in ths case the analyss of the individual alphabets should be an easier task But this would be counterbalanced by the fact that whereas in the former case the cryptanalyst is dealng with the minial words of messages, in this case he is dealng with interior poitions of the text and has no way of knowing where a word begins The latter remarks naturully co not apply to the case wheie a whole set of messages in this system, all in the same key, can be subjected to smultareous study In such a case the cryptanalyst would also have the initial words to work upon

22 Concluding remaiks -a The preceding two paragiaphs both deal with the first ani' simplest of the three basic cases referred to under paragraph 18 The second of those case involve work in solution for the ieason that when the interruption take place and the keying sequence recommences, the latter is not invariably the initial point of the b In the second of thos
b In the second of those cases the interruptor causes a break in the keying sequence and a recommencement at any one of the 10 keymg elements Consequently, it is impossible now merely to superimpose sections of the text by shifting them so that their imitial leiters fall in the same column But a superimposition is nevertheless possible, provided the interruptions keyletters In order to accomplish ans of only a very few letters are enciphered by sequen is essential, and for this a good many letiers are requred The nature of this test will be explained in Section XI
c The same thing is true of the last of the three cases mentioned under paragraph 18 The solution of a case of this sort is admittedly a rather dufficult matter which will be taken up in its proper place later
d (1) In the cases thus far studied, either the plan-text groupings were variable in length and were enciphered by a constant-length key, or the plain-text groupngs were constant in
: When no interruptor or "influence letter" is used, the interruption or break in the keying sequence occur after the enciphcrment of a definte number of lettera Once this number has been ascertained, solution of subsequent messages is very simple
length and were enciphered by a variable-length key It is possible, however, to combine both principles and to apply a variable-length key to variable-length groupings of the plann text
(2) Suppose the correspondents agree to encipher a message accordang to word lengths, bu at irregular intervais, to add at the end of a word an interiphes MACHES and tor rupt the key Note the following, in which the key is BUSINESS MACHINES and the interrupto letter is X

(3) The foregong system is only a minor modification of tne simple case of ordnary word length encipherment as explained in Section II If standard cipher alphabets are used, the spasmodic interruption and the presence of the interruptor letter would cause no difficulty whatever, suce the solution can be achieved mechanically, by completing the plain-componewn, sequence If mixed cipher alphabets are used, ane outhned in Sections II and III, with such solution may be reached by fole the case
modfications as are suitable
e It is hardly necessary to point out that the foregoing types of aperiodic substitution are e er unsuitable for practical multary usage Encipherment is slow and subject to error In rather unsutabes encipherment can be accomphshed only by single-letter operation For if the interruptor is a cipher letter the key is interrupted by a letter which cannot be known in advance, interruptor is a clpher lerruptor is a plan-text letter, whle the interruptions can be indicated before encupherment is begun, the iriegularties occasioned by the interruptions in keying cause confusion and quite materially retard the enciphering process In deciphering, the rate of speed would be just as slow in either method It is obvious that one of the principal disadvantages in all these methods is that if an error in transmission is made, if some letters ane ochle to ar antorion happens to the interruptor letter, the message becomes dificut or security attanable by most by the ordınary code clerk Finally, the degree of cr
of these methods is not sufficient for multary purposes

Section VI

REVIEW OF AUTO-KEY SYSTEMS

The two basic methods of auto-key encipherment.
23 The two basic methods of auto-key encipherment - a In auto-key encipherment there re two possible sources for successive key letters the plam text or the cupher text of the message itself In erther case, the initual key letter or key letters are supphed by preagreement between he correspondents, after that the text letters that are to serve as the key are displaced $1,2,3$, intervals to the right, depending upon the length of the prearranged key
(1) An example of plan-text keying will first be shown, to refresh the student's recollec uon Let the previously agreed upon key consist of a single letter, say X, and let the cupher lphabets be durect standard alphabets

> Key------------------- X N T I FYQUARTERMASTER
> Clpher NOTIFYOUARTERMASTER KBHBNDOKURKXVDMSLXV
(2) Instead of having a single letter serve as the initial key, a word or even a long phrase may be used Thus (using TYPEWRITER as the intial key)

Clamher NOTIFYQUARTERMASTER
c (1) In cupher text auto keyng the procedure is quite sumlar If a sangle initial key letter is used

Cipher KYRZECQUARTERMASTER
(2) If a key word is used

TYPEWRITERGMIMBPYNEI
Key.-
Plain NOTIFYQUARTERMASTER
GMIMBPYNEIZQZYB HRRV
(3) Sometimes only the last cupher letter resulting from the use of the prearranged key word is used as the key letter for enciphering the auto-keyed portion of the text Thus, in the last example, the plain text beginning TERMASTER would be enciphered as follows

Key._.
Plain.
Y PERPT NOTIFYQUARTERMIIATX
Cuber GMMPYNEITERMASTER
d In the foregoing examples, durect standard alphabets are employed, but muxed alphabets, ather mterrelated or independent, may be used just as readily Also, instead of the ordinary elther minterrelated or independent, may employ a mathematical process of addition (see par $40 f$ of Special Text No 166, Advanced Mulitary Cryptography) but the dufference between the latter process and the ordunary one using sliding alphabets is more apparent than real
e Sunce the analysis of the case in which the cipher text constitutes the auto key is usually sier than that in which the plam text serves this function, the former will be the first to be discussed

Sketion VII
SOLUTION OF CIPHER-TEXT AUTO-KEY SYSTEMS
Solution of cupher-text auto-keyed cryptograms when known alphabets are employed. Grequency distributions ring solution of eipher-text auto-keyed cryptograms by frequency analysi Frequency distributions required for solutio
Example of solution by analysis of soomorphism
Special case of solution of cipher-text auto-keyed cryptograms
(1) First of all it is to bext auto-keyed cryptograms when known alphabets are employed a (1) First of all it is to be noted that if the cryptanalyst knows the cipher alphabets which were employed in encipherment, the solution presents hardly any problem at all It is only necessary to decipher the message beyond the key letter or key-word portion and the initial part An example, using standard cipher alphabetter or key word can be filled in from the context An example, using standard cipher alphabets, follows herewith

Cryptogram

WSGQV OHVMQ WEQUH AALNB NZZMPESKD
(2) Writing the cipher text as key letters (displaced one interval to the right) and deciphering by durect standard alphabets yields the following
Key_- \qquad Plann \qquad WSGQVOHVMQWEQUHAALNBNZZMPESK
SGQVOHVMQWEQUHAALNBNZZMP WOKFTTOREGIMENTALCOMMANDPOST the iminal key FORCE so the as the minial word of the message yrelds an intelligible word
\qquad FORCEVOHVMQ WSGQVOHVMQ
(4) A semuautomatic method of solving such a message is to use sliding normal alphabets and algn the strips so that, as one progresses from left to right, each cipher letter is set opposite the letter A on the precedung strip Taking the letters VMQWEQUHA in the foregoing example, note in Figure 7 the seres of placements of the successive strips Then note how the successive plan-text letters of the word REGIMENT reappear to the left of the successive cupher letters
MQWEQUHA

31

AVHXTXNHO WIYUYOTP BWIYUYOIP CXJZVZPJQ DYKAWAQKR FAMCYCSMT GBNDZDTNU HCOEAEUOV IDPFBFVP JEQGCGWQX KFRHDHXRY LGSIEIYSZ MHTJFJZTA NIUKGKAUB PKWMIMCWD LXNJNDXE QLXNJNDXE RMYOKOEYF
SNZPLPFZE SNZPLPFZE TPBRMQGABI VQCSOSICJ WRDTPTJDK XSEUQUKEL YTFVRVLFM ZUGWSWMGN
piegrif
b If, as a result of the analysis of several messages (as described in par 25), muxed mmary components have been reconstructed, the solution of subsequent messages may readly primary components have been reconstructed, the solution of subsequent messages may readuly alphabets have become known alphabets
25. General principles underiying solution of cipher-text auto-keyed cryptograms by equency analysis -a First of all, it is to be noted in connection with clpher-text auto-keying hat repetitions will not be nearily as plentuful in the cpher text as they are in the plam text, ecause in this system before a repetition can appear two things must happen simultaneously First, of course, the plan-text sequence must be repeated, and second, one or more cupher-tex letters (depending upon the length of the introductory key) mmediately before the second appear ance of the plain-text repetition must be identical with one or more cipher-text letters mmediately before the first appearance of the group This can happen only as the result of chance I he following example the introductory key is a single letter, X , and durect standard component used in the usual Virenere manner

Koy...
Plamn_ XCKBTMDHNVHLY
FIRSTREGIMENT
Clpher CKBTMDHNVHLYR

KDKSJMDHNVHLY THIRDREGIMENT KDKSJMDHNVHLYE

The repeated plan-text word, REGIMENT, has only 8 letters but the repeated cıpher-text group contans 9 , of which only the last 8 letters actually represent the plam-text repetition In order that the word REGIMENT be enclphered by DHNVHLYR the second time thas word appeared in the text it was necessary that the key letter for its first letter, R, be M both times, no other key letter will produce the same cipher sequence for the word REGIMENT in this
case Each different key letter for enciphering the first letter of REGIMENT will produce case Each different key letter for encipbering the first letter of REGIMENT will produce a
different encıpherment for the word, so that the chances ${ }^{1}$ for a repetition in this case are roughly about 1 in 26 This is the principal cause for the reduction in repetitions in this system If an introductory key of two letters were used, it would be necessary that the two cipher letters immedaately before the second appearance of the repeated word REGIMENT be identical with the two cipher letters immediately before the first appearance of the word In general, then, an n-letter repetition in the cupher text, in this case, represents an ($n-k$)-letter repetition in the plan text, where n is the length of the cupher-text repetition and k is the length of the introductory key
b There is a second phenomenon of interest in connection with the cipher-text auto-key method Let the letter opposite which the key letter is placed (when using slidng components for encipherment) be termed, for convenience in reference, "the base letter" Normally the base letter is the initial letter of the plan component, but it has been seen in preceding texts that this is only a convention Now when the introductory key is a single letter, if the base ceding cipher letter, that is, there is produced a double letter in the cipher text, no matter what the cipher component is and no matter what the key letter happens to be for that no matter what For example, using the H Y DRA ULI C X Z sequence for both primary comFor example, using the H Y D R A U L I C X Z sequence for both primary com-
ponents, with H, the mitial letter of the plan component as the base letter, and using the introductory key letter X , the following encupherment is produced

$$
\begin{aligned}
& \text { Key... } \\
& \text { Plann } \\
& \text { Cupher- } \\
& \text { XJOIIFLYUTTDKKYCXG } \\
& \text { MANHATTANHIGHJINKS } \\
& \text { JOIIFLYUTTDKKYCXGL }
\end{aligned}
$$

Note the doublets II, TT, KK Each time such a doublet occurs it means that the second letter represents H_{p}, which is the base letter in thus case (initial letter of plan component) Now if the base letter happens to be a high-frequency letter in normal plam text, for example the letter E , or T , then the cipher text will show a large number of doublets, if 1 t happens to be a low-frequency letter the cipher text will show very few doublets In fact, the number of doublets will be directly proportional to the frequency of the base letter in normal plain text Thus, if the cryptogram contains 1,000 letters there should be about 72 occurrences of doublets if
the base letter is A, since in 1,000 letters of plam text there should be about 72 A's the base letter is A, since in 1,000 letters of plann text there should be about 72 A's Conversely, If a cryptogram of 1,000 letters shows about 72 doublets, the base letter is lakely to be A, if it Shows about 90, it is likely to be T , and so on Furthermore when a clue to the identity of the
base letter has been obtained in this manner, it is possible mmediately to insert the corresponding plan-text letter throughout the text of the message The distribution of this letter may not only serve as a check (if no inconsistencies develop) but also may lead to the assumption of values for other cipher letters

When the introductory key is 2 letters, then this same phenomenon will produce groups of the formula ABA, where A and B may be any letters, but the first and third must be identical The occurrence of patterns of this type in this case indicates the encipherment of the base letter If all the cipher letters appeared with equal frequency the chances would be exactly 1 in 26 But certain
letters appear with greater frequency because some plan-text letters are much more frequent than others
d The phenomena noted above can be used to considerable advantage in the solution of cryptograms of this type For instance, if it is known that the ordmary Vigenere method of encipherment is used $\left(\theta_{k / 2}=\theta_{1 / 1}, \theta_{\mathrm{p} /}=\theta_{o / 2}\right)$, then the initial letter of the plam component he base letter If, further, tit in will be enciphered by a group having then the base the ford such as ENEMY would be enciphered by a sequence having the formula AABBCD'2 Sequences such as these are, of course, idiomorphic and if words yielding such idiomorphisms are frequent in the text there will be produced in the latter several or many cases of isomorphism When these are analyzed by the principles of indirect symmetry of position, a quick solution may follow
e A final principle underlying the solution of cipher-text auto-keyed cryptograms remans o be discussed It concerns the nature of the frequency distributions required for the analysis of such cryptograms This principle will be set forth in the next paragraph

26 Frequency distributions required for solution - a Consider the message given in paragraph $23 c$ (1) It happens that the letter R_{o} occurs twice in this short message and, becaush of the nature of the cipher-text auto-keying method, this letter must also appear key Now it is obvious that all plan-text letters enciphered by key letter Ry will in the cipher cipher alphabet, in other words, if the key text is "offset" one letter to the right of the cipher text, then every cipher letter which immedrately follows an R_{0} on the crly as the R clpher alphabet same cupher alphabel, and alst so that there were, say, 30 to $40 \mathrm{Re}_{\mathrm{c}}$'s in it , then a frequency Now if there were sufficient text, so that there were, say, R_{e} 's will exhibit monoalphabeticity What has been said of the letters following the R_{c} 's apphes equally well to the letters following What has been said of the letters text, the A_{c} 's, B_{c} 's, C_{c} 's, and so on In short, if 26 distributions are made, one for each letter of the alphabet, showing the cipher letter immediately succeeding are made, one for each letter of the alferent letter of the cipher text, then the text of the cryptogram can be allocated into 26 unilteral, monoalphabetic frequency distributions which can be solved by frequency analysis, providing there are sufficient data for this purpose
b The foregoing principle has been described as pertaning to the case when the introductory key is a single letter, that is, when the key text 18 "offset" or displaced but one interval to the right of the clpher text But it applies equally to cases wherenn the key text is ofset more deterone interval, provided the frequensy henber mined by the displacement due to the length of the infoductry key the introductory key consists of two letters, as in the followng example
Key text.-
XZMRHFHGFNQRXOMRMVWE
Plan text
$\begin{aligned} & \text { RELIABLEINFORMATION } \\ & \text { MRHFHGFNQRXOMRMV }\end{aligned}$
MRHFHGFNQRXOMRMVWEE

The key text in this case is offset two intervals to the right of the cipher text and, therefore, frequency distributions made by taking the cupher letters one interval to the right of a given cipher letter, each time that letter occurs, will not be monoalphabetic because some letter not related at all to the given cipher letter is the key letter for encipherng the letter one interval to the right of the latter For example, note the three R_{c} 's in the foregoing illustration The first R_{c} is followed by H_{c}, representing the encipherment of L_{p} by M_{k}, the second R_{c} is representing the encipherment of F_{p} by Q_{k}, the H, X_{0}, M a $\xrightarrow{\text { capherment }}$ of A_{D} by M_{k} The three cipher letters H, X, and M are here entirely
not belong to the same cipher alphabet because they represent encipherments by three different key letters On the other hand, the cipher letters two intervals to the right of the R_{0} 's, viz, $F, 0$, and V, are in the same cupher alphabet because these crpher letters are the results of enciphering plan-text letters $I, 0$, and T, respectively, by the same key letter, R It is obvious, then, that when the introductory key consists of two letters and the key text is displaced two will be based upon the the cipher text, the proper frequency distributions for monoalphabeticity f the introductory key consists of three letters and the right of each cipher letter Lakewise, if the inght of the cipher consists of three letters and the key text is displaced three intervals to he right of the clpher text, the distributions must be based upon the thurd interval, and so on, in each case the interval used corresponding to the amount of displacement between key text
c Conversely
d herefore the amount of displacement are not known, the length of the introductory key tributions based upon various intervals after each different ceppearance of the frequency dis known factor, sunce only one set of distributions will exhibit monoalphabeticity and the inter corresponding to that set will be the correct interval
d Application of these principles will now be made, using a spectic example
27. Example of solution by frequency analysis - a It will be assumed that previous studies have disclosed that the enemy is using the cupher-text auto-key system described It will be further assumed that these studies have also disclosed that (1) the introductory key is usually a single letter, (2) the usual Vigenere method of employing sliding primary components is used, (3) the plain component is usually the normal durect sequence, the cipher component a muxed sequence which changes daily. The followng cryptograms, all of the same date, have been
intercepted

Message I

I J X W X	EECDA	CNQET	UK N M V	D I W P P
Q Z SXD	HIFEL	NNJJI	DIVEY	GTCZM
EHHLM	R V C UR	GDIEQ	SGTAR	J JQQY
CARPH	M GLD Y	FYTCD	GYFKR	FKSET
TDIQK	KMLTU	RQGGN	K M K I X	J XWKA
0 KNTB	T ZJOQ	Y SCDI	DGETX	GXXXX
Message II				
GRVRM	ZWKXG	W P C K K	R M X AN	J C C X U
RTNJU	AKOBL	NLMWK	Y Y Z J u	CSUHF
F HI J A	Q BMLT	PURRS	UEQEV	ZEYGC
FFNFI	BWNYS	TCETP	DGTTZ	RRQHQ
A $00 \times \mathrm{D}$	B U Y NK	L BWCD	G G K X X	
Message III				
RWKAO	LTCJM	Z D K V U	J C D D Y	B Z EL M
MWTQ 0	H Q V G X	CHOLM	WVGRK	IBRXD
L A Q Y U	K I R O Z	TQYUX		

Message IV

X J J P M	L T ZKX	ECAQ C	NTtoc	ONDUC
TUTCV	GRJPF	FDIPP	D XCE	SETWW
SUMUJ	C S L G X	HXMOZ	EKAQ I	SUA $0 X$
		Message V		
G I S U H	W ZHST	TZOID	D H 0 OV	N B T J G
X CtBS	FKIRH	M M V Y M	I IVUU	C Z M J E
HAGIE	WMEHH	L M W K Y	PPDQZ	G B O I W
PSFAJ	UQ Z H	M TFHZ	MLACZ	ROVDI
W PVIB	OBCCX	NNDGI	ESJOC	K B J HQ
MUZEL	y 00 VU	JWK I E	I B B O Z	A J IEF
FORSA	J L NQM	B Q X X X		
		Message VI		
T B J P A	ARYYP	V HIDI	TUXNJ	MX G S S
BDAQY	MMTTF	UUNMG	Q P UXM	OVUYE
C ECZM	MWOHC	FOBHV	NKAZC	K M X X X
		Message VII		
T B J PA	QAAZT	R X AL X	FKKME	IAABD
SFTQT	CJJGJ	OVMRG	LVWTT	J UAWL
XUKTX	G G B 0 X	M X D D	SPBSF	L Y Z K C

b A distribution table of the type described in paragraph $25 e$ is compiled and is shown as Figure 8 below In making these distributions it is simple to insert a tally in the appropriate Figure 8 below In making these distributions it is simple to msert a cell in the pertinent horizontal line of the table, to indicate the cipher letter which immediately cell in the pertinent horizontal line of the table, to indicate the cipher letter which immediately
follows each occurrence of the letter to which that line apphes Obviously, the best method of follows each occurrence of the letter the wha the data is to handle the text digraphically, taking the first and second letters, the second and thurd, the third and fourth, and so on, and distributing the final letters of the digraphs in a quadricular table The distribution merely takes the form of tally marks, the fifth being a dragonal stroke so as to totalize the occurrences visibly

SECOND LETTER

ABCDEFGHI JKLMNOPQRSTUVWXYZ

figobs 8
c The individual frequency distributions give every appearance of being monoalphabetc which checks the assumption that the enemy is still employing the same system The total number of letters of text (excluding the final X 's) is 680 If the base letter is A then The tota be approximately $680 \times 72 \%=49$ cases of double letters in the text There are actually 5 such cases, which checks quite well with expectancy The letter A is substituted throughou the text for the second letter of each doublet
d The following sequence is noted

Assume that the sequence DDHOOVNBT represents BATTALION Then the frequency of H_{c} in the D cipher alphabet should be high, since $H_{c}=T_{p}$ The H has only 2 occurrences Likewise, the frequency of O_{c} in the H alphabet $\left(=\mathrm{T}_{\mathrm{D}}\right)$ should be high, it is also only 2 The frequency of V The rest of the letters of the assumed word since it would equal L_{p}, it is 5 , which is too high quency distributions, with the result that, on the whole, the assumption that the DDHOOVNBT
sequence represents BATTALION does not appear to be warranted Similar attempts are made at other pounts in the text, with the same or other probable words Some of these attempts at other pounts in the text, with the same or other probable words Some of these attempts
may have to be carried to the point where the placement of values in the tentative cipher component leads to serious mnconsistencles Finally, attention is fixed upon the following sequence
Message VI, line 2------. BDAQY $\overline{M M} \bar{T} T F \overline{U U N M G}$
The word MMTTFUUNMG $A V A I L A B L E$ is assumed The appropriate frequency distributions are consulted to see how well the actual individual frequencies correspond to the expected ones

${ }_{\substack{\text { Alpha } \\ \text { bet }}}^{\text {Al }}$	Assumed		Frequency		${ }_{\substack{\text { Approxi } \\ \text { mation }}}$
	${ }^{\text {of }}$	$\theta_{\text {D }}$	Expected	Actual	
M	T	v	Low	2	Far
T	F	I	Itigh	2	Farr
F	U	L	Medium	1	Good
U	N	B	Low	1	Good
N	M	L	Medum	2	Faur
m	G	E	High	3	Farr

The assumption cannot be discarded just yet Let the values derivable from the assumption be inserted in their proper places in a cipher component, and, using the latter in conjunction with a normal direct sequence as the plain component, let an attempt be made to find corroboration for these values The followng placements may be made

Plann. \qquad ABCDEFGHIJKLMNO \qquad
The letter M_{c} appears twice in the cipher sequence and when this partially reconstructed cipher
component is tested it is found that the value $L_{p}\left(N_{b}\right)=M_{\text {o }}$ is corroborated component is tested it is found that the value $L_{p}\left(N_{k}\right)=M_{c}$ is corroborated Having the letters $\mathrm{M}, \mathrm{F}, \mathrm{G}, \mathrm{U}, \mathrm{N}$, and T tentatively placed in the cipher component, it is possible to insert certan plain-text values in the text For example, in the M alphabet, $F_{c}=D_{p}, G_{c}=E_{p}, U_{c}=O_{p}, N_{c}=P_{p}$,
$T_{c}=V_{p}$ In the F alphabet, $G_{c}=B_{p}, U_{c}=L_{p}, N_{c}=M_{p} T_{c}=S_{p}, M_{c}=X_{p}$ The other letters yield $\mathrm{a}_{\mathrm{c}}=\mathrm{V}_{\mathrm{p}}$, inserted in the cipher text No inconsistencies appear and, moreover, cortan "rood" duraph are brought to light For instance, note what happens here

Message V, line 4 \qquad $\begin{array}{cccccc}U Q Z H & Z M T F H & Z M L A C & \\ U Q Z H Z & \text { TFHZ }\end{array}$ \cdots \qquad UQZHZMTF
Now if the letter H can be placed in the cipher component, several values might be added to this partial decipherment Noting that F and G are sequent in the cipher component, suppose H follows G therein Then the following is obtaned
 Plan------------ V I C

Suppose the VIC is the beginning of VICINITY This assumption permits the placement of $\mathrm{A}, \mathrm{C}, \mathrm{L}$, and Z in the cipher component, as follows
Plain. \qquad ABCDEFGHI
I JKLMNOPQRSTUVWXYZ

These additional values check in very nicely and presently the enture cupher component is reconstructed It is found to be as follows

Clainher- \qquad MBCDEFGHIJKLMNOPQRSTUVWXYZ GKXZUREXOTYIC
The key phrase is obviously UNDERWOOD TYPEWRITER COMPANY All the messages now may be deciphered with ease The following gives the letter-for-letter decipherment of the first three groups of each message

I (Introductory key K)

In the foregoing example the plain component was the normal drect sequence, so that e In the foregoing example the plain component was the normal direct sequence, so that
with the Vigenere method of encipherment the base letter is A If the plan component is a muxed sequence, the base letter may no longer be A , but in accordance with the principle set forth in paragraph 25b, the frequency of doublets in the cipher text will correspond with the frequency of the base letter as a letter of normal plain text If a good clue as to the identic of the on cen he handled eng the hines indrosted above 27 .
in Example of solution by analysis of isomorphisms - a It was stated in paragraph 25d that in cupher-text auto-keerg may yeld a quick soluorphs is a frequent phenomenon and be studied
b Suppose the following cryptograms have been intercepted

USYP W	TRXDI	MLEXR	K V D B D	D Q G S U	NS Fibo
BEKVB	MAMMO	T X X $\mathrm{W}^{\text {d }}$	ENAXM	Q L ZIX	D IX C Z
PMYUC	NEVVJ	LKZEK	URCNI	FQFNN	Y GSIJ
TCVNI	XDDQQ	EKKLR	VRFRF	XROCS	S J T B V
EFAAG	ZRLFD	NDSCD	M P B B V	DEWRR	NQ ICH
ATNNB	OUPIT	JLXTC	VAOVE	Y J J L K	DMLEG
NXQWH	UVEVY	PLQGW	U PVKU	BMMLB	OAEOT
TNKKU	XLODL	WTHCZ	R		
2					
B I I B F	G R X L G	HOUZO	L L Z NA	M HCTY	Scat
XRSCT	K V $\mathrm{BWK}^{\text {W }}$	0 TGUQ	QFJOC	YYBVK	IXDMT
KTtCF	K VKRO	B OEPL	Q I GNR	I Q OVJ	Y K I P H
J OEYM	R PEEW	HOTJO	CRIIX	0 ZETZ	N K
3					
HALOZ	J R R V M	M HCV ${ }^{\text {c }}$	Y U HAO	EOVAC	Q V V JL
KZEKU	RFRFX	Y BHAL	ZOFHM	RSJYL	APGRS
XAGXD	M CUNX	X L X G Z	J PWUI	F D B B Y	PVFZN
B J N N B	ITMLJ	OOSEA	ATKPB	Y	

c Frequency distributions are made, based upon the 2 d letters of pairs, as in the preceding example The result is shown in the table in figure 9 The data in each distribution are relatuvely scanty and it would appear that the solution is going to be a rather difficult matter

SECOND LETTER

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ
d However, before becoming discouraged too quickly, a search is made throughout the text to see if any 1somorphs are present Fortunately there appear to be several of them Note the following

(1)	D B D D G S
Message 1---------	NEVVJLKZEKURCNIF
	TNKKUXLODLWTHCZR\|end of message
Message 2.---------. (4)	CRIIXOZETZNK ${ }^{\text {¢ }}$ (end of message
Message 3-----.---- (5)	CQVVJLK ZEKURFRFX

First, it is necessary to delimit the length of the isomorph Isomorph (2) shows that the 1somorphisin begins with the doubled letters For there is an E before the V V in that case and also an E within the 1somoiph, if the phenomenon included the E, then the letter immediately before (2), which is a Hence, we may take it as established that the isomorphism begins with the doubled letters

As for the end of the isomorphusm, the fact that isomorphs (2) and (5) are the same for 10 letters seems to indicate that that is the length of the isomorphism The fact that message 2 ends 2 letters after the last "tie-1n" letter, Z , corroboiates this assumption It is at least certain that he isomorphism does not extend beyond 11 letters because the recurrence of R in isomorph (5) is not matched by the recurrence of R in isomorph (2), nor by the recurrence of T in isomorph (3) Hence it may be assumed that the isomorphic sequence is probably 10 letters in length, possibly 11 But to be on safe ground it is best to proceed on the 10 -letter basis
e Applying the princuples of indirect symmetry to the superimposed isomorphs, partial ap equral解 sequence may be derived from the data given

The only missing letters are A, C, H, M, P, and Yy use of the nearly complete sequence on the text it will be possible to place these 6 letters in their positions in the clpher component Or, if a keyword-mixed sequence is suspected, then the sequence which was reconstructed may be merely decimation of the orignal primary sequence By testing the partial sequence for various intervals, when the seventh is selected the following result is obtained

The sequence is obviously based on the keyword HYDRAULIC, and the complete primary clpher component is now avalable The plain component is then to be reconstructed A word must be assumed in the text
f A rood probable word to assume for the 10-letter repetition found in messages 1 and 3 ARTILLERY This sungle assumption is sufficient to place 7 letters in the plain component Thus

$$
\begin{aligned}
& \text { Key.-------------- VVJLKZEKUR } \\
& \text { Plain_------------- } \quad \text { ARTILLERY }
\end{aligned}
$$

These few letters are sufficient to indicate that the plann component is probably the normal drect sequence A few minutes testing proves this to be true The two components are therefore
\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
HYDRAULICBEFGJKMNOPQNTVWZ
With these two components at hand, the decipherment of the messages now becomes a relatively sumple matter Assuming a single-letter introductory key, and trying the first five groups of message 1 the results are as follows

Key.-- \qquad Plain.

It is obvious that an introductory key of more than one letter was used, since the first few letters yeld unintelligible text, but it also appears that the last cupher letter of the introductory key was used as the introductory key letter for enciphering the subsequent auto-keyed portion of the text (see par 23c(3)) However, assuming that the IVE before the word FIRE is the ending of the first word of the plan text, and that this word is INTENSIVE, the introductory key word is found to be WICKER Thus

Key_-- WICKERTRXDIMLEXRKVDBDDQGS.
 Cipher----INTENSIVEFIREOFLIGHTARTIL.

The begnnings of the other two messages are recoverable in the same way and are found to be as follows

	2
Plain.-----------	REQUESTVIGOROUS
Capher-----------	BIIBFGRXLGHOUZO
Key	CHARGEDRRVMMHCVB
Plan	SECONDBAT
Cipher-------	ALOZJRRVMMHC

g The example solved in the foregoing subparagraphs offers an important lesson to the student, insofar as it teaches hum that he should not immeduately feel dzscouraged when confronted urth a problem presenting only a small quantity of text and therefore affording what seems at first there are insufficient data for analysis for solution For in this example, whle it is true that solution was achueved urthout any recourse to the princuples of frequency of occurrence Here, then, is one of those interesting cases of substitution cuphers of rather complex construction which are solvable without any study whatsoever of frequency distributions Indeed, it will be found to be true that in more than a few instances the solution of quite complicated cipher systems may be accomplished not by the application of the principles of frequency, but by recourse to inductive and deductive reasoning based upon other considerations, even though the latter may often appear to be very tenuous and to rest upon quite flumsy supports

29 Special case of solution of cipher-text auto-keyed cryptograms - a Two messages with dentical plan texts enciphered according to the method of paragraph $23 c$ (3) by initial key words of different lengths and compositions can be solved very rapidly by reconstructing the primary components The cryptographic texts of such messages wull be esomorphic after the innial cey-word portions Note the two following superimposed messages, in which isomorphism between the two cryptograms is obvious after their 6th letters

Starting with any pair of superimposed letters (beginning with the 7th parr), chams of equivalents are constructed

 | 1 | 2 | 8 |
| :--- | :--- | :--- | :--- | :--- |
| Z | O_{1} | | LXNCHPEDSG QFRTJUWMI AVK

By interpolation, these partial sequences may be united into the key-word sequence
HYDRAULICBEFGJKMNOPQSTVWXZ

6 The mitial key words and the plan texts may now be ascertamed quite easily by decipherng the messages, using this primary component slid against itself It will be found that the initial key word for the 1st message is PENCE, that for the $2 d$ is LATERAL The reason that the cryptographe texts are isomorphic beyond the initial key word portions is, of course, that sunce the text beyond the key word is enciphered auto-key fashion by the preceding cipher letter the letters before the last letter of the key have no effect upon the encipherment at all Hence two messages of identical text cannot be other than isomorphic arter the intial key-word porinons
c The foregoing solution afiords a clue to the solution of cases in which the texts of two or more messages are not completely identical but are in part identical because they happen th have simular begmnige or endas, or contam nealy in progress in such cases is ar so ras as in the case of mon much care must bo ex struction of the primary componets wased
(1) omdentical components are employed, th a for the application of a principle pointed out in a preceding text ${ }^{4}$
(2) Suppose that the three messages of paragraph $27 b$ had been enciphered by using a plam component different from the muxed component The encupherments of the wor ARTILLERY would still yeld isomorphuc sequences, fro
(3) Having reconstructed the can be accomplont (or an equvalent) the latter may be
(3) Havng reconstructed a "decipherment" obtamed In this process any sequence of 26 letters may be used as the plam component and even the normal sequence $A \quad Z$ may be employed for this purpose The word decipherment in the next to the last sentence is enclosed by quotation marks because the letters thus obtamed would not yeld plan text, since the rea or an equivalent plan component has not yet been found Such "deciphered" text may b termed spurrous plam text But the important theng to note is that hes text rs now monoalphabeho and may be solved by the simple procedure usually employed in solving a monoalphabetrc copher produced by a single mixed alphabet Thus, a polyalphabeno cipher may bo con to alphabetic terms and the problem much simplified in other words, here of the situations in which the principle of conversion into monoalphabehc terms may be apple with gratufyng success. It解 aldug against itself or against the normal sequence

[^0]e (1) If the auto-key method shown in paragraph $23 c$ (2) had been employed in enciphering the two identical texts above, the solution would, of course, have been a bit more difficult To different compositions PENCE and LATER Thus

No 1
Key---- PENCETSBJSMMNRULPUIH JBTXFINNRM Man_onen UESTINFORMATIONOFSITUATIONI Cipher--- TSBJSMMNRULPUIH JBTXFINNRMDWIQV Key------- DWIQV PCKAO DPAZO BCMRIAFNWO GLIHT
 No 2
\qquad LATER BKKMJ RBTUX SGEBQ YRHHA TETUC

Key------ NOGTM LDQLENGBYE WDSUHPUTZEHHGDK

(2) Now let the two cryptograms be superimposed and isomorphisms be sought They are shown underlned below
1------TSBJSMMNRULPUIH JBTXFINNRM DWIQV
\qquad

\qquad

It will be noted that the intervals between isomorphe superimposed pairs show a constant factor of 5 , indicating a 5 -letter intial key word
(3) A reconstruction diagram for the pairs beyond the first five letters is established, based upon this interval of 5 , and is as follows

	P	W		N		H		T	Y	D	5	R			L	I	0				F	G		
2	X	R	D		U						H	B	E		G		W				0	P		
3	B	K		I	N	0		G		Q		5	T		W	x	c	H	E		D	R		
4	L	F	E	A			D	B		N	C		P		S	T	U	W			2	H		Y
	W	D		T	A	U	Q	H		I		C	B	E	F	G		K	X	M	N	0		

The equvalent sequence AWNBDTKIHQGUXOERVMCYSJLZPFis established by indurect symmetry, from this, by decimation on the eleventh interval, the HYDRAULIC XZ component is recovered
(4) It wall be noted that the foregoing case, in which the initial key words for the two cryptograms are of the same length, is only a special apphcation of the method set forth in paragraph 44 of necessary, since no new principles are involved

Saction VIII

SOLUTION OF PLAIN-TEXT AUTO-KEY SYSTEMS

Preluminary remarks on plan-text auto-keying...
 Example of solution by the probable-word method --
Concluding remarks on the solution of suto-key

30 Prelhminary remarks on plam-text auto-keying - a If the oupher alphabets are unknown sequences, plan-text auto-keying gives rise to cryptograms of more intricate character than does cupher-text auto-keying, as has already been stated As a cryptographic principle it is very commonly encountered as a new and remarkable "invention" of tyros in the cryptographic art It apparently gives rise to the type of reasoning to which attention has been durected once before and which was then shown to be a popular delusion of the uninitiated The novice to whom the auto-key principle comes as a brilliant flash of the magination sees only the apparent mpossibility of penetrating a secret which enfolds another secret His reasoning runs about as follows "In order to read the cryptogram, the would-be solver must, of course, first know the key, but the key does not become known to the would-be solver until he has read the cryptogram and has thus found the plan text Since this is reasonng around a carcle, the system is indecipherable" How unwarranted such reasonng really is in this case, and how readily the problem is solved, will be demonstrated in the next few paragraphs
b A consideration of the mechancs of the plan-text auto-key method discloses that a repetition of n letters in the plain text will produce a repetition of $(n-k)$ letters in the cipher text, where n represents in the in the cipher text as there are in the plam text, except for true dgraphe repetitions are to be faurly expected, sunce it can happen that two different plain-text pairs, enciphered by dufferent key letters, will produce identical cipher equuvalents Such accidental repetitions will happen less frequently, of course, in the case of longer polygraphs, so that when repetitions of 4 or more letters are found in the cipher text they may be taken to be true or causal repetitions it is obvious that in studyng repetitions in a cryptogram of this type, when the introductory key is a single letter, a 5 -letter repetition in the cipher text, for example, represents a 6 -letter word, or sequence repeated in the plan text When the introductory key is k letters in length then an n-letter repetition represents an $(n+k)$-letter repetition in the plan text
c The discussion will, as usual, be divided into two principal cases (1) when the cupher alphabets are known and (2) when they are unknown Under each case there may be an introductory key consisting of a sungle letter, a word, or a short phrase The single-letter mitial ductory key consisting
31. Solution of plain-text auto-keyed oryptograms when the introductory key is a single letter - a Note the following plain-text auto-keyed encipherment of such commonly encountered letter - a Note the following plain-text auto-keyed encipherment of such commonly encountered
plam-text words as COMMANDING, BATTALION, and DIVISION, using two identical primary plam-text words as canents, in this case drect standard alphabets
$\xrightarrow[135022-30 —]{ }$
(45)

Key text

1) Playn te

Clpher \qquad BATTALI ON Key text BATTALION
BTMTLTWB
$\left\{\begin{array}{l}\text { Key text_ } \\ \text { Plaun text }\end{array}\right.$ $\left\{\begin{array}{l}\text { Plain text } \\ \text { Cipher.-. }\end{array}\right.$ \qquad COMMANDING COMMANDING

Plain text \qquad D I V I S I O N ay be noted ${ }^{2}$
(1) The cipher equivalent of A_{p} is the plan-text letter which immediately precedes A_{p} e the two A's in BATTALION, in example 1 above)
(2) A plain-text sequence of the general formula ABA yrelds a doublet as the cipher equivalent of the final two letters (See IVI or ISI in DIVISION, example 2 above)
(3) Every plan-text trigraph having A_{p} as its central letter yelds a cipher equvalent the last two letters of which are identical with the initial and final letters of the plain-text trigraph (See MAN in COMMANDING, example 3 above)
(4) Every plain-text tetragraph having A_{p} as the initial and the final letter yields a cipher equivalent the second and fourth letters of which are identical with the second and thurd letters of the plain-text tetragraph, respectively (See APTA in CAPTAIN, example 4 above, also ATTA in BATTALION, example 1)
b (1) From the foregoing characterstics and the fact that a repetition of a sequence of n plain-text letters will yield, in the case of a 1 -letter introductory key, a repetation of a sequence of $n-l$ cipher letters, it is obvious that the sumplest method of solving this type of cipher is long before the solution would consist merely in referring to lorsts of cipher trafic it would not be monly used words (as found from previous messages) and searching through the mesen for monly used words (as found from prens (2) Ner equivalents
(2) Note how easily the following message can be solved

BECJI BTMTLTBPQ AYMNQ HVNETWAALC
Seeing the sequence BTMTLTWB, which is on the hst of equivalents in a above (see example 1), the word BATTALION is inserted in proper position Thus

With this as a start, the decipherment may proceed forward or backward with ease Thus $\begin{array}{llllllll}\text { BECJI } & \text { BTMTL } & \text { TWBPQ } & \text { AYMNQ } & \text { HVNET } & \text { WAALC } \\ \text { EACHB } & \text { ATTAL } & \text { IONCO } & \text { MMAND } & \text { ERWIL } & \text { LPLAC }\end{array}$
c The foregoing example is based upon the so-called Vigenère method of encipherment ($\theta_{k n}=\theta_{1 /}, \theta_{\nu \Lambda}=\theta_{0,2}$) If in encipherment the plain-text letter is sought in the cipher component, its equivalent taken in the plain component ($\theta_{x / 2}=\theta_{1 / 1}, \theta_{p / 2}=\theta_{e n}$), the steps in solution are identical, except that the list of cipher equivalents of probable words must be modafied accordingly For instance, BATTALION will now be enciphered by the sequence
ZTAHLXGZ
${ }^{1}$ The student is cautioned that the characterstics noted apply only to the case where two identical components are used, with the base letter A
d If reversed standard cipher alphabets are used, the word BATTALION will be enciphered by the sequence \qquad BHATPDUB,
which also presents idiomorphic characteristics leading to the easy recognition of the word
e all the foregoing phenomena are based upon standard alphabets, but when mixed cipher components are used and these have been reconstructed, sumlar observations may be recorded and the results employed in the solution of additional messages enciphered by the same components

32 Example of solution by the probable-word method.- a The solution of messages enciphered by unknown mixed components will now be discussed by example When the primary components are unknown, the observations noted under the preceding subparagraphs are of course, not applicable, nevertheless solution is not difficult Given the following three ciyptograms, all intercepted on the same day, and therefore suspected of being related

Message I

H U F I I	OCQJJ	IVzoz	VPDGO	V V V K W
UEWHU	UQHUM	RZVQR	UAKVD	N NEZV
G JPGH	AY J DR	UWNGR	Y SKBL	QVUXN
PHDPR	S VKZ P	PPKGS	L L P R V	R B HAK
WUAVW	YUEZQ	XAPQY	GPSVS	FNRAK
CIFGZ	UVCCP	DKCWV	X TWFM	R FKBV
ROQOJ	DRUWN	GRYSK	B L	
		Message II		
JUFII	OCQ J J	IVzoz	I bFeJ	S UBR J
SPKTS	R Z V T	WFMRF	Q H HFO	RFJPD
G OVVV	KWUHE	NDBDD	RHWUN	K C M P D
G OVZS	ENDBD	DRHWU	NPPKP	EQ O Y
		Message III		
F J U HF	FKDEN	ALUPZ	K Q M V B	J W V P K
EUBDD	RHWUM	RHVGP	D NCU J	C D ZCy
RHUJU	F Z PQP	Y Q CYH	OEQ ZV	XKCQF
TVHNS	VCCEJ	PEAMP	APOEP	B HMV J
UNMHH	WKCVG	DSWJA	EQZBU	FFy ${ }^{\text {ce }}$
ZQXAP	QYGPA	R P Z V X	CFNRA	KCIFG
zuvcc	PDKCO	G J W Z H	APUFZ	FVHAV
X M HFF	KMYHS	т $\mathrm{BSK}_{\text {S }}$	VRQIJ	Y C P Z H
U HCBM	THOFH			

b (1) There are many repetitions, therr untervals show no common factor, and a unuliteral frequency distribution does not appear to be monoalphabetic Plain-text auto-keyng is suspected The simplest assumption to make at the start is that single-letter introductory keys are beng used, whin the normal Vigenere method of encipherment, and that ne plamp componen whe normal sequed that the cher component is a muxed sequence The 13 -letter repetition J DRUWNGRY S K B L and the 10 -letter repetition P DGOVVVKWU are studied intensively If a
sungle-letter introductory key is being used, then these repetitions involve 14-letter and 11-letter sungle-letter introduotory key is being used, then these repetitions invoive 14-letter and in-letter
plain-text sequences or words, if the normal Vigenere method of encipherment is in effect
 $\left(\theta_{\mathrm{K}} \mu=\theta_{/ i 1}, \theta_{\mathrm{D}} \Lambda=\theta_{\mathrm{of}}\right)$, then the base
would fit the 13 -letter repetition is

> Key_-_-_Plaun text Clpher_--- RECONNAISSANC RECONUSNANCE
ch would fit the 10 -letter repetition is

$$
\begin{aligned}
& \text { Key-- } \\
& \text { OBSERVATION } \\
& \text { Clpher } \\
& \text { bSERTATION } \\
& \text { PDGOVVVKWU. }
\end{aligned}
$$

(2) Inserting, in a muxed component, the values given by these two assumptions yields the following

Plain_-
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Clpher---$\left\{\begin{array}{lll}R & A & J \\ E & D & U\end{array}\right.$
(3) It is a simple matter to combine these two partial cipher components into a single sequence, and the two components are as follows

Plann-- \qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
(4) With the primary components at hand, solution of the messages is now an easy matter c The foregoing example uses an unknown muxed cupher component sliding against what was first assumed (and later proved) to be thenormal drect sequence Whan both primary components are unknown mixed sequences but are identical, solution is more dufficult, naturally because the results of assuming values for repeated sequences cannot be proved and established so quickly as in the foregoing example Nevertheless, the general method indcated, and the apphcation of the principles of indirect symmetry will lead to solution, if there is a farr amount of text avalable for study When an introductory key of several letters is used, repetitions are much reduced and the problem becomes still more difficult but by no means insurmountable Space forbids a detailed treatment of the method of solving these oases but it is beheved that the student is in a position to develop these methods and to experment with them at his leisure
33. Concluding remarks on the solution of auto-key systems -a The type of solution elucidated in the preceding paragraph is based upon the suocessful application of the probableword method But sometimes the latter method fails because the commonly expected words
 basic principles involved may lead to rather far-reaching complexties However, because these methods are applicable only to somewhat special situations, and because they are somewhat involved they will be omitted from the text proper and placed in Appendix 1 The student who is especially interested in these cases may consult that appendix at his leisure
b. It is thought that sufficient attention has been devoted to the solution of both cipher-text and plain-text auto-key systems to have demonstrated to the student that these cryptographic methods have serious weaknesses whych exclude them from practical usage in mulutary cryptography Besides being comparatively slow and subject to error, they are rather easily solvable, even when unknown cipher alphabets are employed
c In both systems there are charactenstics which permit of identifying a cryptogram as belonging to this class of substitution Both cases will show repetitions in the cupher text In cipher-text auto-keying there will be far fewer repetitions than in the ongmal plain text, especially when introductory keys of more than 1 -letter in length are employed In plain-text auto-keyng there will be nearly as many repetitions in the cupher text as in the origmal plam text unless long introductory keys are used In either system the repetitions will show no cons in regards intervals betweon them, and a uniliteral frequency distribution will show from plan-text to be polyalphabetic in nature Cipher-text auto-keyng may be distingushed from plam-text auto-keying by the appearance of the frequency distribution of the second member of sels of two letters separated by the length of the introductory key (see par 2bh) In the case of ciphertext auto-keying these frequency distribul auto-keying such frequency distributions will not show monoalphabetic charactenstics

Section IX
METHODS OF LENGTHENING OR EXTENDING THE KEY Prelumnary remarks

y keying sequences
34 Prelimina suggest themselves for elmmating the waph $1 b$ of this text it was stated that two procedures duced by sumple, repeating-key methods The first of these, when studied, embraced type prothe very sumple methods of suppressing or destroying periodicity, by studied, embraced some of the key and using variable-length groupings of plain text It wes demonstrated ther upting fuges of this simple nature are inadequate to eliminate the weaknesses referred to, that subterliscarded in any system intended to afford real security The other alternative suggested in paragraph $1 b$ therefore remains now to be investigated, viz, that of lengthening the keys to a point where there would seem to be an insufficient amount of text to enable the cryptanalyst to solve the traffic Attempts toward thas end usually consist in extending the key to such a length that the enemy cryptanalysts will have only a very limited number of pernods to work with The key may, indeed, be lengthened to a point where it becomes as long as, or longer than, the 35 Extended ed, so that the key is used only once
35 Extended and nonrepeating keys - a It is obvious that one of the simplest methods of it is neming the key to a message is to use a long phrase or even a complete sentence, provided it is not too long to remember In addition to the difficulties that would be encountered in practical military cryptography in selecting long mnemone phrases and sentences which would
have to be imparted to many still remains as a powerful tool in there is the fact that the probable-word method of solution two of the key can be reconstructed in the hands of enemy cryptanalysts And if only a word or enemy cryptanalysts could readily phrase or sentence which is selected buess the enture key from a fragment thereof, sance any lon known to many people 18 selected because it can easily be remembered is likely to be wel b There are, howeve
order to produce a much longer ter less sumple methods of employing a short mnemonic key 1 alphabetic sequence repeated several tumes wall yield a fairly long key, which, apphed to a single advantage of being unnntelligible and thus approaching a random selection of letters For example, a numerical key may be derived from a word or a short phrase, this numerical key For then be apphed as a columnar-transposition key for a rectangle within which the normal alphabet has been repeated a previously agreed upon number of times in a normal (left to nght) or prearranged manner The letters when transcribed from the transposition rectangle then become the successive letters for encuphering the plaun text, using any desired type of primary com-
ponents Or, if a single transposition is position will yield a still more mixed up not thought to be sufficiently secure, a double transmay be eaployed for the purposed up sequence of key letters Other types of transposition various knds of geometric figures Also, a non-
(50)
transposition method of lengthening the keyng sequence and at the same time introducing an urregulanty, such as aperiodic interruption has already been described (see par 18) Given Another method of developing a long key from a short mnemone one is that shown below. Given the keyword CHRISTMAS, a numerical sequence is first derived and then one writes down successive sections of this numencal key, these sections terminating with the successive num bers $1,2,3$,
of the numencal key Thu
Mnemonc key------- C H R I S T M A S
Numencal key---- $2-3-6-4-7-5-1-8$

Thus the orgmal key of only 9 letters 18 expanded to one of 45 letters $(1+2+3+$ The longer key 18 also an interrupted key of the type noted under paragraph 17, but if the message $1 s$ long enough to requure several repetions of the expanded key the encupherment becomes periodic and can be handled by the usual methods employed in solving repeating-key cuphers If the basic key is farly long, so that the expanded key becomes a quite lengthy sequence, then the message or messages may be handled in the manner explamed in paragraph 20
d Another method of producing a rather long sequence of dugts for keying purposes from a angle key number is to select a number whose reciprocal when converted by actual division int its equivalent decimal yields a long series of digits For example the reciprocal of 49, or 1/49, yrelds a sequence of 42 digits begnning 02040815 Such a number, coupled whih a being used for encuphering as many letters as are undicated by the successive digits In the case of the example cited, the first digit is 0 , hence the C alphabet would not be used The next digit is 2 , the H alphabet would be used for enciphering the first and second letters The third digt is again 0 , the R alphabet would not be used The fourth digit is 4 , the I alphabet would be used for enciphering the third, fourth, fifth, and sixth letters, and so on
36. Other systems employng lengthy keying sequences -a The so-called "running-key" system - To be mentioned in connection with this subject of extensive or lengthy keys is the cupher system known as the running-key, contunuous-key, or nonrepeating-key system, in which the key consists of a sequence of elements which never repeats no matter how long the message to be enciphered happens to be The most common and most practical source of such a key is key letters for enciphermant ${ }^{1}$ The solution of this type of cupher an accomplishment which was once thought impossible, presents some interesting phases and will be considered shortly At this once thought mpossible, presents some interesting phases and will be considered shorty At in indulidual message may be as long as the message and never repeat, but if a large group of correspondents employ the same key sequence, it may happen that there will be several messages in the same key and they will all begin with the same initial key letter, or, there will be several which will "overlap" one another with respect to the key, that 1s, they begin at different initial points in the keyng sequence but one mesage soon overtakes the othe, so that from that pow forward all subsequent letters in both messages are enciphered by the same sequence of key letters
${ }^{1}$ See IX, Advanced Mrlatary Cryptography See also footnote 8, page 71 of this text.
b The so-called progresswe-alphabet system -In the so-called progressive-alphabet system the basic principle is quite sumple Two or more primary elements are arranged or provided for according to a key which may be varied from trime to time, the are arranged or proviction of the primary for according to a key which may be varied from time to time, the interaction of the primary
elements results in makng available for cryptographic purposes a set of cipher alphabets, all the latter are employed in a fixed sequence or progression, hence the designation progressivealphabet system If the number of alphabets avallable for such use is rather small, and if the text to be encuphered is much longer than the sequence of alphabets, then the system reduce to a periodic method But if the number of alphabets is large, so that the sequence is not repeated, then of course, the cryptographic text will exhrbit no pernodic phenomena
c The sernes of clpher alphabets in such a system constitutes a keyng sequence Once set up, often the only remaming element in the key for a specific message is the starting point in the sequence, that is, the initial cipher alphabet employed in enciphering a given message If this keyng sequence must be employed by a large group of correspondents, and if all messages employ the same starting point in the keying sequence, obviously the cryptograms may simply be superimposed without any preliminary testing to ascertain proper points for superimposition The student has already been shown how cases of this sort may be solved However, if messages are enclphered with varyng starting points, the matter of superimposing them properly takes on a different aspect This will soon be treated in detal
d The respective cipher alphabets constituting the enture complement of alphabets may be employed in a sumple progression, that is, consecutively from a preselected initial point, or, they may be employed accordung to other types of progression For example, if the system or irriegular types of skipping may be employed sequence $1,3,5,7$, , or $1,4,7,10$,
e In addition to the foregoing, there are
e In addition to the foregoing, there are, of course, a great many mechanical methods of producing a long key, such as those employed in mechanical or electrical cipher machnes In jointly produce a single, much longer, secondary or resultant more short, primary keys which reference can be made at this point in the cryptanalytic studies to cases of this land any brief reatment of complex examples would require much time and space so that it will be reared for subsequent texts
f Finally, there must be mentioned certain devices in which, as in encipherment by the auto-key method, the text itself serves to produce the vanation in cipher equivalents, by controlling the selection of secondary alphabets, or by influencing or determining the sequence with which they wll be employed Naturally, in such cases the key is automatically extended to a point where it coincides in length with that of the text An excellent example of such a device is that known as the Wheatstone, the solution of which will be described in its proper place ${ }^{2}$ Some writers classify and treat this method as well as auto-key methods as forms of the runningkey system but the present author prefers to consider the latter as being radically different in principle from the former types, because in the true running-key system the key is wholly external to and independent of text being enciphered This is hardly true of auto-key systems or of ystems such as the Wheatstone mentioned herem
${ }^{2}$ See Sec XII, Advanced Mzlatary Cryptography

Section X

GENERAL PRINCIPLES UNDERLYING SOLUTION OF SYSTEMS EMPLOYING LONG OR CONTINUOUS KEYS

Solution when the primary components are known sequences
 components are known eneral solution for cupherphabet apher when the primary components are known

37 Solution when the primary components are known sequences $-a$ As usual, the solution of cases involving long or continuous keys will be treated under two headings First, when the primary components are known sequences, second, when these elements are wholly unknown partially unknown
b Since the essential purpose in using long keys is to prevent the formation of repetitive cycles within the text, it is obvious that in the case of very long keying sequences the cryptanalyst is not going to be able to take the text and break it up into a number of smail cycles colved, an end which he can attan all the more
 equod Inasmuch as this method is applicable to most of these ceses, even to that of the moung key system, which perhps represt the furn ning-key syse an 38 sequences, an example usung a cryptogram of the latter type will be studred
used and the primary components are known -an inknown but intelligible key sequence the so-called running-key, continuous-key, or nonrepeating-key system, in which the plain text of a previously agreed-upon book serves as the source for successive key letters for encipherment Sunce the running-key system is entirely aperiodic, and the clpher test can therefore not be arranged in supermposed short cycles, as in the case of the repeating-key system, it would ppear on first consideration to be "indecipherable" wrthout the key " But if the student will bear in mind that one of the practical methods of solving a repeating-key clpher is that of the probable word, ${ }^{2}$ he will mmediately see that the latter method can also be apphed in solving this type of nonrepeating-key system The essence of the matter is this The cryptanalyst may assume the presence of a probable word in the text of the message, if he knows the primary components involved, and if the assumed word actually exists in the message, he can locate it by checkng aganst the key, since the latter $2 s$ intelligible text Or, he may assume the presence of a probable word or even of a phrase such as "to the," "of the," etc, in the key text and cheok his assumption against the text of the message Once he has forced

At one time, indeed, thus view was current among certann cryptographers, who thought that the principle of factonng the intervals between repetitions in the case of the repeating-key cipher formed the basis for the only possible method of solving the latter type of system Since, acoordng to this erroneous idea, factoring dered to be impossible How far this idea is from the truth will presently be seen In this same connection see also footnote 8, page 71
: See Miltary Cryptanalysts, Part II, par 25
such an entering wedge into erther the message or the key, he may buld upon this foundation by extending his assumptions for text alternately in the key and in the message, thus graduHVGGLOWBESLTR and finds a place in the plan text where this relds MMUNITT Thus, using reversed stenderd and finds a place in the plain text where this glelds MMUNITI Thus, using reversed standard clpher alphabets

```
Assumed key text_----.----.---- T H A T T H E
Clpher text.
HVGGLLOWBESLTR
Resultant plain text
```

\qquad

``` MMUNITI
```

This suggests the word AMMUNITION The ON in the clpher text then yelds PR as the beginning of the word after THE in the key text Thus

Assumed key text...	THATTHEPR
Clpher text---------------------------	HVGGLOWBESLTR
Resultant plann text---------------	MMUNITION

PR must be followed by a vowel, with 0 the most likely candidate He finds that 0 yrelds \mathbb{V} in the plann text, which suggests the word WILL The latter then yields OTEC in the key, making the latter read THAT THE PROTEC

Thus

Assumed key \qquad
\qquad THATTHEPROTEC
Resultant plan text.
MMGGLOWBESLTR

This suggests the words PROTECTION, PROTECTIVE, PROTECTING, etc Thus extending one text a few letters serves to "coerce" a few more letters out of the other, somewhat as in the case of two boys who are running approximately abreast in a race, as soon as one boy gets a bit ahead the spirit of competition causes the other to overtake and pass the first one, then the latter puts
forth a little more effort, overtakes and passes the second boy Thus the boys alternate in overtang and peserg, och and passes fals is that whie tho erally un ford the cryptanalyst is free to work in two directions-forward and backward from an internal point in the message He may, in the case of the example cited above, contanue his bulding-up process by adding A to the front of MMUNITI as well as ON to the rear If he reaches the end of process by adding A to the front of MMUNITI as well as ON to the rear If he reaches the end of
his resources on one end, there remains the other end for experimentation He is certannly his resources on one end, there remains the other end for experimentation He is certainly
unlucky if both ends terminate in complete words both for the message and for the key, leaving unlucky if both ends terminate in complete words both for the message and for the key, leaving of his imagination, guided only by the context
b In the foregoing llustration the cryptanalyst is assumed to have only one message available for his experimentation But if he has two or more messages which either begin at identical initial points with reference to the key, or overiap one another with respect to the key, the reconstruction process described above is, of course, much easier and is accomphshed much more quickly For if the messages have been correctly superamposed woth reference to the key text, the addution of one or two letters to the key yvelds suggestions for the assumptzon of words in several messages The latter lead to the addation of several letters to the key, and so on, in an everwidening circle of ideas for further assumptions, since as the process continues the context affords more and more of a basis for the work
c Of course, if sufficient of the key text is reconstructed, the cryptanalyst might identify the book that is being used for the key, and if avalable, his subsequent labors are very much simplified
d All the foregoing $1 s$, however, dependent not only upon the use of an intelligible text as the keying text but also upon having a knowledge of the primary components or cipher alphabets employed in the encipherment Even if the primary components are differently mixed sequences, so long as they are known sequences, the procedure is quite obvious in view of dicate to hm the procedure he may follow in that solution, and no further detais will here be ren in respect to such cases But what if the promery components are not known sequences This contonency will be treated presently
39. Solution of a progrescive-alphab
. Solury Taking a very sirple case, suppose the interacting elements referred to in paragraph $36 b$ consist merely of two prmary cipher components which slide against each other to produce a set of 26 capher alphabets are employed one after the other consecutively Beginning it an inithe cipher alphabets are employed one after the other consecutively Beginning at an mintial $2,3,26,1,2,3, \quad$, and so on If a different intial juxtaposition is used, say alphabet 10 is the first one, the sequence is exactly the same as before, only beginning at a different point
b Suppose the two primary components are based upon the keyword HYDRAULIC a message is to be enciphered, beginning with alphabet 1 Thus
Plam component_---_--HYDRAULICBEFGJKMNOPQSTVWXZHYD Clpher component----HYDRAULICBEFGJKMNOPQSTVWXZ

Letter No \qquad | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
| :--- |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Alphabet \qquad Plam text. \qquad ENE Capher text \qquad 22 OPUUEYHM K Q V M K Z S S J Q H E

Letter No \qquad 222324252627282930313233343536373839 Alphabet $\begin{array}{llllllllllllllll}22 & 23 & 24 & 25 & 26 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 12 & 13\end{array}$ Plain text \qquad $\begin{array}{lllllllllllllllllll}\text { T } & E & R & D & I & C & T & I & 0 & N & F & I & R & E & U & P & 0 & N \\ N & L & H & H & L & C & V & B & S & S & N & J & E & P & K & D & D & D\end{array}$
Letter No \qquad 4041424344454647484950515253
Alphabet \qquad $\begin{array}{lllllllllll}14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ 25 & 26 & 18\end{array}$
Plam text \qquad $\begin{array}{llllllllllllll}\mathbf{Z} & \text { A } & \text { N } & \text { E } & \text { S } & \text { V } & \text { I } & \text { L } & \text { L } & \text { E } & \text { R } & 0 & A & \text { D } \\ \text { G } & \text { P } & \text { U } & H & F & \text { K } & H & H & Y & \text { L } & H & M & R & D\end{array}$
c This method reduces to a periodic system involving 26 secondary cipher alphabets and the latter are used in simple progression It is obvious therefore that the 1st, 27th, 53 d , letters are in the 1st alphabet, the 2d, 28th, 54th, letters are in the 2d alphabet, and so on d To solve such a cryptogram, knowing the two primary components, is hardly a problem at all The only element lackang is a knowledge of the starting point But this is not necessary, for merely by completing the plan-component sequences and examinng the diagonals of the diagram, the plan text becomes evident For example, given the followng HIDCT EHUXI Completing the plann-component sequences intiated by the successive cipher letters, the
plam text, E N EM Y MACH I is seen to come out in successive steps upward in Fygure 10 Had the cipher component been shfted in the opposite drection in encipherment, the steps would have been downward instead of upward If the sliding strips had been set up according to the sequence of cipher letters but on a diagonal, then, of course, the plain-text letters would have reappeared on one generatrix
e The student will understand what simple modufications in procedure would be requred in case the two primary components were different mixed sequences But what if the primary components are not known sequences? How does the cryptanalyst proceed in that case?
40. General solution for ciphers mvolving a long-keying sequence of fixed length and composition - a It is obvious, as stated at a previous point, that no matter how the keying sequence is derived, of all the correspondents employ the same key, or of thrs key is used many tumes by a single office, and if ot always beguns at the same point, the 2arous messages may simply be superamposed Thus, their
respectrve 1st, 2d, 3rd, letters will all fall within columns respective 1st, 2d, 3rd, letters will all fall within columns
key letters which have been enciphered by the 1st, 2d, 3rd, key letters If there is a sufficient number of messages, solution then becomes possible by frequency analysis of the successive columns-nomatter
how long the keying sequence may be, and regardless of whether the keying sequence constatutes intelligible text or is a purely random sequence of letters This method of solution by superimposition has already been outlined in paragraph 20 and no further reference to it need here be made
b But now suppose that the keying sequence does not always begin at the same point for all messages Suppose the several correspondents are able to select at will any point in the keying sequence as the point of departure in encipherment Thus, such a keying sequence, if regarded as partaking of the nature of a circle, will afford as many possible starting points as there are letters or characters in that sequence Now if there are no external indications or anducators " in the cryptograms pertaning to such a system, such as would afford enemy cryptanalysts direct and definte information with regard to the imtal keying element for each cryptogram, then it would seem as though the superimposition of messages (to bring letters encuphered by the same cipher alphabets within the same columns) would be difficult or impossible, and therefore that attempts at solution are blocked at their very beginning This, however, 18 not the end of the story For suppose two of the messages have in common only one polygraph, say of 5 letters, these two messages may be juxtaposed so as to bring these repetitions into supermposition Thus, the possession of this long polygraph in common serves to "tie" these two messages together or to "interlock" them Then, suppose a shorter polygraph, say of 4 letters, is possessed in common by one of these two messages and a third message, thas will serve to the in the latter tri mpition Therefore the first step is to examio all the messages for repetitions imposition Therefore, the first step is to examine all the messages for repetitions
${ }^{2}$ Indioators play an important role in practical cryptography An indicator 2 sa a symbol (conssisting of a letter, group of letters, a figure or a group of figures) whioh ndicates the appoific key used undar the general oryptographic system, or it may indicate which one of a number of general systems has been used, or it may indr-
oate both
c When such repetitions are found, and if there are plenty of them so that assumptions for probable words are easy to make, it is clear that the correct assumptions will enable the cryp analyst to set up plain-clpher equivalencies which will make it possible to reconstruct the primary components Depending upon the type used, the principles of drect or indirect symmetry of position will be very useful in this process
d But if it happens that there are no polygraphs by means of which two or more messages may be tied together and properly supenmposed, the simple methods mentioned in subparagraphs a-c cannot here be applied However, although the road toward a solution seems to be blocked rather effectively, there is a detour which presents rather interesting vistas The latter are really of such importance in cryptanalysis as to warrant detailed treatment

Stection XI

The basic theory of the concidence or k (kappa) test
The basic theory of the conncidence or κ (kappa) test uample of application of the x te
41. The basic theory of the coincidence or x (kappa) test ceding text ${ }^{1}$ certan simple applications of the theory of probability were presented for the ceding text certain simple applications of the theory of probability were presented for the
student's consideration, by way of pointing out to hm the impoitant role which certain phases of that branch of mathematics play in cryptanalysis Reference was there made to the subject of councudences and its significance in connection with the study of repetitions in cryptograms In this section the matter will be pursued a few steps fur ther
b In the appendux referred to, it was shown that the probability of monographic comendence (1) in random text employing a 26 -letter alphabet is 0385 , (2) in Enghsh telegraphic plain text, 0667 These two parameters were represented by the symbols κ_{r} and κ_{p}, respectively The mportant role which these values play in a certan cryptanalytic test will now be explaned
c One of the most important techniques in cryptanalytics is that known as applying the conncrdence or "kappa test" This test is useful for several cryptanalytic purposes and one of the most mportant of them is to ascertain when two or more sequences of letters are correctly superimposed By the word "correct" in this case is merely meant that the sequences are so arranged relative to one another as to facilitate or make possible a solution The test has for its theoretical basis the following circumstances
(1) If any two rather lengthy sequences of characters are supermposed, it will be found o examining both members of the successive pairs of letters brought into vertical juxtaposition hat in a certain number of cases the two supermposed letters wull corncude
(2) If both sequences of letters constitute random text (of a 26-letter alphabet), there will be about 38 or 39 such cases of concidence per thousand pairs examined This, of course, is because $\kappa_{\mathrm{r}}=0385$
(3) If both sequences of letters constitute plain text, there will be about 66 or 67 such cases of concidence per thousand pars examined This is because κ_{p} is 0667
(4) If the superimposed sequences are wholly monoalphabetic encupherments of plan text by the same clpher alphabet, there will still be about 66 or 67 cases of comcidence in each 1,000 cases examined, because in monoalphabetic substitution there is a fixed or unvaryin relation between plam-text letters and cupher letters so that for statisical purposes monoalphabetic cipher text behaves just the same as if it were normal plain text
(5) Even if the two supermposed sequences are not monoalphabetically enciphered texts, but are polyalphabetic in character, there will still be about 66 or 67 cases of 1dentity between upermposed letters per thousand cases examined, provded the two sequences really belong to the same cryptographic system and are supermposed at the proper point urth respect to the keynng sequence The reasons for this will be set forth in the succeeding subparagraphs
' Milhtary Cryptanalysis, Part II It is recommended that the student refresh his memory by reviewing that appendix
(6) Consider the two messages below They have been enciphered polyalphabetically by e same two primary components sliding aganst each other The two messages use the same keying sequence, beginning at the same intial point in that sequence Consequently, the two messages are identically enciphered, letter for letter, and the only dufferences between them are those occasioned by differences in plain text

Abstract

No 1 \qquad 1 Plam tor $\begin{array}{lllllllllllllllllllll}16 & 21 & 12 & 5 & 6 & 4 & 17 & 19 & 21 & 21 & 2 & 6 & 3 & 0 & 13 & 18 & 1 & 7 & 12 & 0 \\ W & H & E & N & I & N & T & H & E & C & 0 & U & R & S & E & L & O & N & G & N\end{array}$ Cipher

Alphabets 2 Plain text Capher$\begin{array}{lllllllllllllllllllll}16 & 21 & 13 & 5 & 6 & 4 & 17 & 18 & 21 & 21 & 2 & 6 & 3 & 6 & 13 & 13 & 1 & 7 & 12 & 6 \\ T & H & E & G & E & \mathrm{~N} & \mathrm{E} & \mathrm{R} & \mathrm{A} & \mathrm{L} & \mathrm{A} & \mathrm{B} & \mathrm{S} & \mathrm{O} & \mathrm{L} & \mathrm{U} & \mathrm{T} & \mathrm{E} & \mathrm{L} & \mathrm{Y}\end{array}$ PQNTUFBWDJLQHYZPTMQ

 Note, now, that (a) in every case in which two supermposed cipher letters are the same, the plain-text letters are identical and (b) in every case in which two supermposed cupher letter are dufferent, the plam-text letters are difterent In such a system, even though the clpher members of a pair of superimposed cipher letters will still be about 66 or 67 per thousand cases members of a pair of supermposers of each parr of superimposed letters are in the same copher lphabet and it has been seen in (4) that in monoalphabetcc copher text κ 2s the same as for plan ext,' $n z, 0667$ The two messages may here be sald to be superimposed "correctly," that 1 s , brought into proper juxtaposition with respect to the keyng sequence(7) But now suppose the same two messages are superimposed "incorrectly," that is, they are no longer in proper juxtaposition with respect to the keying sequence Thus
\qquad Cipher-an $-\ldots$ E
 No 2 Plam text Clpher

It is evident that the two members of every pair of superimposed letters are no longer in the same cupher alphabet, and therefore, if two superimposed cipher letters are identical this is merely an "accident," for now there is no basic or general cause for the simularity, such as is rue in the case of a correct superimposition The smmalarity, if present, is, as already stated, due to chance and the number of such cases of similarity should be about the same as though the two cupher letters were drawn at random from random text, in which $k_{r}=0385$ It is no onger true that (a) in every case in which two superimposed clpher letters are the same, the plain-text letters are identical, or (b) in every case in which two superimposed cipher letters are different, the plam-text letters are dufferent Note, for example, that the superimposed T_{0} 's represent two different plain-text letters and that the S_{p} of the word COURSE in the first message gives J_{0} while the S of the word ABSOLUTELY in the second message gives H_{0} Thus, it becomes clear that in an incorrect superimposition two dufferent plan-text letters enciphered by two different alphabets may "by chance" produce identical cupher letters, which on supermposition yield a

The fact that in this case each monoalphabet contans but two letters does not affect the theoretical value of k, and whether the actual number of concidences agrees closely
0867 depends upon the lengthe of the two supermmposed sequences
comcidence having no external indications as to dissimularity in plan-text equivalents Hence f there are no other factors which enter into the matter and which might operate to distor he results to be expected from the operation of the basic factor, the expected number of cases of dentucal cipher letters brought together by an incorrect superimposition will be determined by the value $\kappa_{\mathrm{F}}=0385$
(8) But now note also that in the foregoing incorrect superimposition there are two Z_{o} 's and that they represent the same plain-text letter L This is occasioned by the fact that the plaintext messages happened to have L's in just those two places and that the clpher alphabet happened to be the same both times Hence, it becomes clear that the same cipher alphabet brough into play twice may "by chance" happen to encipher the same plain-text letter both times, thus apher letters is of hittle ipher letters in some systems this source of identicy actual number of comcidences For mstance, if a system is such that it produces a long secondary keying cycle composed of repetitions of short primary keyng cycles, an incorrect supermposition of two ryptograms may bring onto juxtaposition many of these short cycles, whth the result that the actual number of cases of identical superimposed cipher letters is much greater than the ex pected number based upon $k_{\mathrm{r}}=0385$ Thus, this source for the production of identical cipher letters in an incorrect superimposition operates to increase the number of cases to be expected from the fundamental constant $\kappa_{\mathrm{f}}=0385$
(9) In some systems, where nonrelated cipher alphabets are employed, it may happen hat two identical plain-text letters may be enciphered by two dufferent cupher alphabets which "by chance," have the same equivalent for the plain-text letter concerned This is, however a function of the particular cryptographic system and can be taken into account when the (10) the system is known
(10) In general, then, it may be said that in the case of a correct supermposition the俍
 ben refer to "councince test" Sine this tast use the constant x_{2} th is also called the "kappa test"
d The way in which the comerdence test may be apphed will now be explamed The tatement that $\kappa_{p}=0667$ means that in 1,000 cases where two letters are drawn at random from a large volume of plain text, there will be about 66 or 67 cases in which the two letters coincide, that is, are identical Nothing is specified as to what the two letters shall be, they may be two Z's or they may be two E's This constant, 0667, really denotes a percentage many comparsons of single letters are made, the letters being drawn at random from among yeld comeridences So, if 2,000 such comparisons are made, the theory indicates that there hould be about $0667 \times 2,000=133$ comeidences, if there is sufficient text to permit of making 0,00 comparisons, there should be about 1,334 coincidences, and so on

Another way of handlung the matter is to find the ratio of the observed number of cocidences to the total number of cases in which the event in question might possibly occur, 1 e the total number of comparisons of superimposed letters When this ratio is closer to 0667 than it is to 0385 the correct supermposition has been ascertaned This is true because in the case of a correct superimposition both members of each pair of superimposed letters actually belong to the same monoalphabet and therefore the probabilty of their coinciding is 0667 whereas in the case of an incorrect superimposition the members of each parr of superimposed
letters belong, as a general rule, to dufferent monoalphabets ${ }^{3}$, and therefore the probability of ther counciding is nearer 0385 than 0667
f. From the foregoing, it becomes clear that the kappa test involves ascertaming the total number of comparisons that can be made in a given case, as well as ascertainng the actual number of comcidences in the case under consideration When only two messages are supermposed, this is easy The total number of comparisons that can be made is the same as the number of superimposed pairs of letters But when more than two messages are superimposed in a superimposition dragram it is necessary to make a simple calculation, based upon the fact that n letters yield $\frac{n(n-1}{2}$ pairs or comparisons, where n is the number of letters in the column 4 For example, in the case of a column of 3 letters, there are $\frac{3 \times 2}{2}=3$ comparisons This can be checked by noting that the 1st letter in the column may be compared with the 2d, the 2 d with the 3d, and the lst with the 3d, making 3 companisons in all The number of comparisons per column tumes the number of columns in the superimposition diagram of letters gives the total number of comparisons The extension of this reasoning to the case where a superimposition duagram has columns of various lengths is quite obvious one merely adds together the number of comparisons for columns of different lengths to obtain a grand total For convenuence, the following brief table is given

$\begin{aligned} & \text { Number of } \\ & \text { lettery } \\ & \text { cotumn } \end{aligned}$	Number of	$\begin{gathered} \text { Number of of } \\ \text { Ietomsinin } \\ \text { cocium } \end{gathered}$	Number of Couppar sons	$\underset{\substack{\text { Nember of } \\ \text { Letturymn }}}{\substack{\text { column }}}$	Nombitor of
2	1	11	55	21	210
3	3	12	66	22	231
4	6	13	78	23	253
5	10	14	91	24	276
6	15	15	105	25	300
7	21	16	120	26	325
8	28	17	136	27	351
9	36	18	153	28	378
10	45	19	171	29	400
		20	190	30	435

g In ascertanng the number of concidences in the case of a column contaning several letters, it is again necessary to use the formula $\frac{n(n-1)}{2}$, only in this case n is the number of identical letters in the column The reasoning, of course, is the same as before The total ${ }^{2}$ The qualifying phrase "as a general rule" is intended to cover any distortion in results occasioned by the presence of an unusual number of those cases of coincoidence described under subpar c (8) and (9) This has already been encountered (footnote 3, Appendix 2, Milhtary Cryptanalyszs, Part II) It 2 m merely a dferent things taken r at a tue which is $\frac{C}{=}=\frac{n!}{n}$ In studying coincidences by the method indeated different thngs taken r at a time, which is $\frac{a}{n r}=\overline{r^{\prime}(n-r)!}$ In studyng coincidences by the method mdicated,
since only two letters are compared at a time, r is always 2 , hence the expression $\frac{n^{\prime}}{r(n-r)!}$, which is the same as $\frac{n(n-1)(n-2)!}{2(n-2)!}$, becomes by cancellation of ($\left.n-2\right)$ ', reduced to $\frac{n(n-1)}{2}$

number of councidences is the sum of the number of comendences for each case of identity For example, in the column shown at the side, containng 10 letters, there are $3 \mathrm{Bs}, 2 \mathrm{Cs}, 4 \mathrm{Ks}$, and the foregoing principles to an actual case will now be described.- a The steps in applying Z enciphered by the same keyng sequence but each beginning at a different point in that $\begin{array}{ll}\mathbf{Z} & \text { sequence are to be solved The indicated method of solution is that of superimposition, } \\ \mathrm{K} & \text { the problem being to determine just where the respective }\end{array}$ | K |
| :--- |
| C |
| the problem beeng to determine just where the respective messages are to be superimposed | so that the cipher text within the respective columns formed by the superimposed messages will be monoalphabetic From what has been indicated above, it will be understood that the various messages may be shifted relative to one another to many duferent porits of to all the others Furst, all the messages are numbered according to their lengths, the long t being assigned the number 1 Commencing with messages 1 and 2, and keeping number 1 in est being assigned the number 1 Commencing with messages 1 and 2 , and keeping number 1 in

a fixed position, message 2 is placed under it so that the inital letters of the two messages coincide a fixed position, message 2 is placed under it so that the initial letters of the two messages coincide Then the two letters forming the successive pairs of superimposed letters are exammed and the total number of cases in which the superimposed letters are identical is noted, this givng the
observed number of coincidences Next, the total number of supermposed pars is ascertaned, and the latter is multipled by 0667 to find the expected number of coincidences If the observed number of comerdences is considerably below the expected number, or if the ratio of the observed number of coincidences to the total number of comparisons is nearer 0385 than 0667, the superimposition is incorrect and message 2 is shifted to the next superimposition, that is, so that its first letter is under the second of message 1 Agam the observed number of comcidences is ascertained and is compared with the expected number Thus, by shifting message 2 one space at a time (to the right or left relative to message 1) the concidence test finally should indicate the proper relative positions of the two messages When the correct point of superimposition is reached the cryptanalyst is iarely left in doubt, for the results are sometimes quite startling After messages 1 and 2 have been properly superimposed, message 3 is tested first agannst messages 1 and 2 separately, and then against the same two messages combined at their correct supermposition ${ }^{5}$ Thus message 3 is shifted a step each time until its correct position with respect to messages 1 and 2 has been found Then message 4 is taken and its proper pount of superimposition with respect to messages 1,2 , and 3 is ascertained The process is continued it ins maines that correct pant of supenmp correct points of sup b In the forego
b In the foregoing procedure it is noted that there is necessity for repeated displacement of one message agaunst another or other messages Therefore, it is advisable to transcribe the messages on long strips of cross-section paper, joming sections accurately if several such strips are necessary to accommodate a long message Thus, a message once so transcribed can be shifted to various points of superimposition relative to another such message, without repeatedly rewriting the messages
c Machinery for automatically comparing letters in applying the coincidence test has been devised Such machness greatly faciltate and speed up the procedure
${ }^{5}$ At first thought the student might wonder why it 18 advisable or necessary to test message 3 against message it seems to hum, might be omitted and time saved thereby The matter will be explained in par $43 f$ ($\mathbf{3}$)
43. Example of apphcation of the κ test - a With the foregoing in mind, a practical example will now be given The followng messages, assumed to be the first 4 of a series of 30 messages, supposedly enciphered by a long keying sequence, but each message commencing at a dufferen point in that sequence, are to be arranged so as to bring them into correct superimposition

Message 1

PGLPN	HUFRK	SAUQQ	AQYU0	ZAKGA	EOQCN
PRKOV	HYEIU	Y N B O	NFDMW	Z L UKQ	AQAHZ
M GCDS	LEAGC	JPIVJ	WVAUD	BAHMI	HKORM
LTFYZ	LGSOG	K			
Megsage 2					
C W H P K	K X F L U	MKURY	XCOPH	W N J U W	K W I H L
0 KZTL	AWRDF	G D DEZ	DLBOT	FUZNA	SRHHJ
N G U Z K	PRCDK	Y O O B V	D D X C D	OGRGI	RMICN
HS GGo	PYAOY	\mathbf{X}			
Mrssage 3					
WFWTD	NHTGM	RAA ZG	P J D S	A UPFR	$0 \times \mathrm{JRo}$
HRZWC	ZSRTE	EEVPX	OATDQ	L D OQ	HAWNX
THDXL	HYIGK	V Y Z WX	BKOQO	A Z Q N D	TNALT
CNYEH	TSCT				
Mebsage 4					
TULDH	NQEZZ	UTYGD	UEDUP	S D I O	L N N B O
NYLQQ	VQGCD	UTUBQ	XSOSK	NOXUV	K C Y J X
C N J K S	ANGUI	FTOWO	M S N B Q	D BAIV	I K N W G
V SHIE	P				

b Superimposing ${ }^{\circ}$ messages 1 and 2, beginning with their 1st letters,
 No 2------ CWHPKKXFLUMKURYXCOPHWNJUWKWIHLOKZTL
 No 2------ AWRDFGDDEZDLBOTFUZNASRHHJNGUZKPRCDK
 No 2------ YOOBVDDXCDOGRGIRMICNHSGGOPYAOYX
the number of coincidences is found to be 8 Since the total number of comparisons is 101, the expected number, if the supermposition were correct, should be $101 \times 0667=67367$, or about 7 comcidences The fact that the observed number of comcidences matches and is even greater than the expected number on the very first trial creates an element of suspicion such good even of the results are favorable, for thas close agreement between theoretical and actual numbers

[^1]of comacidences might just be "one of those accidents" Therefore message 2 is shifted one space to the right, placing its 1st letter beneath the 2d letter of message 1 Again the number of coincidences is noted and this time it is found to be only 4 The total number of compansons is now 100, the expected number is still about 7 Here the observed number of compldences is considerably less than the expected number, and when the relatively small number of comparisons is borne in mind, the discrepancy between the theoretical and actual results is all the more strikng The hasty cryptanalyst might therefore jump to the conclusion that the 1st supermposition is actually the correct one But only two trials have been made thus far and a few more are still advisable, for in this scheme of superimposing a series of messages it is absolutely essential that the very first superimpositions rest upon a perfectly sound foundationotherwise subsequent work will be very daffcult, if not entirely frutless Additional trials will therefore be made
c Message 2 is shifted one more space to the right and the number of coincidences is now found to be only 3 Once again message 2 is shifted, to the position shown below, and the observed number of coincidences jumps suddenly to 9
 No 2---- CWHPKXFLUMKURYXCOPHWNJUWKWIHLYK

 No 2----..- CDKYOOBVDEXCDOGRGIREMCNHSGGOPYAOYX
The total number of comparisons is now 98, so that the expected number of comelidences is $98 \times$ $0667=65366$, or still about 7 The 2d and 3d superimpositions are definitely meorrect, as to onsiderng the relatively small number of comparisons, comncidences than the former Again the 4th superimposition as against the 1st is important Further detailed explanation is unner of sary, and the student may now be told that it happens that the 4th superimposition is really correct, if the messages were longer, all doubt would be dispelled The relatively large number of coincidences found at the 1st superimposition is purely accidental in this case d The phenomenon noted above, wherenn the observed number of concide udden increase in moving from an incorrect to a correct superimposition is not at all unusual, nor should it be unexpected, because there is only one correct superimposition, while all other supermpositions are entirely incorrect In other words, a superimposition is either 100 percent correct or 100 percent wrong-and there are no gradations between these two extremes Theoretically, therefore, the dafference between the correct superimposition and any one of the many incorrect supermpositions should be very marked, since it follows from what has been noted above, that one cannot expect that the discrepancy between the actual and the theoretical number of comecidences should get smaller and smaller as one approaches closer and closer to the correct superimposition ${ }^{7}$ For if letters belonging to the same cupher alphabet are regarded
${ }^{7}$ The importance of this remark will be appreciated when the student comes to study longer examples, in which statistical expectations have a better opportunity to materialize
as being members of the same family, so to speak, then the two letters forming the successive pars of letters brought into superimposition by an incorrect placement of one message relative to another are total strangers to each other, brought together by pure chance This happens time and again, as one message is sld against the other-until the correct superimposition is reached, whereupon in every case the two superimposed letters belong to the same family There may be many dafferent familes (cipher alphabets) but the fact that in every case two members of the same family are present causes the marked jump in number of coincidences
e In shffting one message aganst another, the cryptanalyst may move to the nght constantly, or he may move to the left constantly, or he may move alternately to the left and right from a selected intial point Perhaps the latter is the best plan
f (1) Having properly superimposed messages 1 and 2, message 3 is next to be studied Now it is of course possible to test the lattel message against the combination of the former, lon 3 mise ion become apparent $1 t$ is better, eren though much more work is involved first to test message 3 aganst message 1 alone and against message 2 alone This will really not involve much addıtoonal work after all, succe the two tests can be conducted simultaneously, because the proper tional work after all, sunce the two tests can be conducted simultaneously, because the proper superimposition of messages 1 and 2 is already known If the tests aganst messages 1 and 2
separately at a given supermposition give good results, then message 3 can be tested, at that separately at a given supermposition give good results, then message 3 can be tested, at that
superimposition, against messages 1 and 2 combined That is, all 3 messages are tested as a superimposition, against messages 1 and 2 combined That is, all 3 messages are tested as a
single set
Since, according to the scheme outlined, a set of three closely related tests is involved, one might as well systematize the work so as to save time and effort, if possible With this in view a diagram such as that shown in Figure $11 a$ is made and in it the concidences are recorded in the approprate cells, to show separately the comidences between messages 1 and 2,1 and 3 , 2 and 3, for each superimposition tested The number of tallies in the cell 1-2 is the same at the beginning of all the tests, it has already been found to be 9 Therefore, 9 talles are inserted in cell 1-2 to begn with A column which shows identical letters in messages 1 and 3 yields a single tally for cell 1-3, a column whinch shows identical letters in messages 2 and 3 yrelds a single tally for cell $2-3$ Only when a superimposition yields 3 identical letters in a column, is a tally to be recorded simultaneously in cells 1-3 and 2-3, since the presence of 3 identical letters in the column yelds 3 comncidences

Flectar ila
(2) Let message 3 be placed beneath messages 1 and 2 combined, so that the lst letter of message 3 falls under the ist letter of message 1 (It is advisable to fasten the latter in place
so that they cannot easily be disturbed) Thus
\qquad
 WFWTWHPKKXFLUMKURYXCOPHWNEU WFWTD NHTKGMRAAZGPJDSQAUPFROX

\qquad

\qquad WKWIHLOKKTLAWRDFGDDEZDLVOTF
JROHRZWCZSRTEEEVPXOATDQLDO Q

\qquad
\qquad UZNASRHHJNGUZKPRCDKYOOBVDDX

\qquadCDOGRGIRMICNHSGGOPYAOYX

Frazer $11 b$
The successive columns are now examined and the comeidences are recorded, remembenng that only comcidences between messages 1 and 3 , and between messages 2 and 3 are now to be tabulated in the dragram The results for this first test are shown in Figure $11 b$ This superimposition yields but 3 coincidences between messages 1 and 3 , and the same number between is drawn up

Combination	Total mumber	Number of coincidences		${ }_{\text {Diecrep }}^{\text {Bucy }}$
		Expected	Observed	
Mesarges 1 and 3				Percent
Messages 2 and 3	96	About About 6	3 3	-57 -50
Messages 1, 2, and 3	${ }_{291}^{96}$	About About 19	$\begin{array}{r}3 \\ 15 \\ \hline\end{array}$	-50 -21

68
Note how well the observed and expected numbers of coincidences agree in all three combina-
Note how well the observed and expected numbers of coincidences agree in all three combina-
trons Indeed, the results of this test are so good that the cryptanalyst might well hesitate to thons Indeed, the re
make any more tests
make any more tests
(5) Hanng ascertained the relative positions of 3 messages, the fourth message is now studied Here are the results tor the correct superimposition

No 1-------
No 2-----

\qquad WFWTHPKKXFLUMKURYXCOPHWNJUWKWIHLOK

 No 2----- ZTLAWRDFGDDEZDLBOTFUZNASRHHJNGUZKPR No 3.------CZSRTEEEVPXOATDQLDOQZHAWNXTHDXLHYTG No 4 QQVQGCDUTUBQXSOSKNOXUVKCYJXCNJKSAN

No 2-_---CDKYOOBVDDXCDOGRGIRMICNHSGGOPYAOYX
No 3.-----K KYYZXBKOQOAZQNDTNALTCNYEHTSCT

The results for an uncorrect superimposition (1st letter of message 4 under 4th letter of message 1) are also shown for comparison

No 1
\qquad
 No 2----- CWHPKKXFLUMKURYXCOPHWNJUWKWIHLOK

No 1
\qquad
 CZSRTEGDEZDLBOTFUZNASRHHJNGUZKPR No 3 ---- CZSRTEEEVPXOATDQLDOQZHAWNXTHDXLHYIG
LQQGCDUTUBQXSOSKNOXUVKCYJXCNJKSAN
\qquad

No 2. ---- CDKYOOBVDDXCDOGRGIRMICNHSGGOPYAOYX No 3.-..-- KVYZWXBKOQOAZQNDTNALTCNYEHTSCT
No 4----- GUIFTOWOMSNBQDBAIVIKNWGVSHIEP

	1	2	3	4

Combination		Numbor of conncidences		
		Expected	Observed	
Messages 1 and 4.	96	About 6	3	${ }_{\text {Prent }}$
Messages 2 and 4 - . ---	96	About 6	3	-50
Messages 3 and 4......-	96	About 6	1	-83
Messages 1, 2, 3 and 4 .	582	About 39	33	-18

(6) It is beleved that the procedure has been explained with sufficient detail to make further examples unnecessary The student should bear in mind always that as he adds messages to the superimposition diagram it is necessary that he recalculate the number of comparisons so that the correct expected or theoretical number of concidences will be before ham to compare with the observed number In adding messages he should see that the results of the separate tests are consistent, as well as those for the combined tests, otherwise he may be led astray at tumes by the overbalancing effect of the large number of concidences for the already ascertaned, correct superimpositions

44 Subsequent steps - a Jn paragraph $43 a$ four messages were given of a series supposedly enciphered by a long keying sequence, and the succeeding paragraphs were devoted to an explanation of the preparatory steps in the solution The messages have now been properly supermposed, so that the text has been reduced to monoalphabetic columnar form, and the matter is now to be pursued to its ultumate stages
b The four messages employed in the demonstration of the principles of the κ test have served their purpose The information that they are messages enciphered by an intelligible running key, by reversed standard cupher alphabets, was whthheld from the student, for pedagogical reasons Were the key a random sequence of letters instead of intelhgible text, the explanation of the comeldence test would have been unchanged in the slightest particular, so
far as concerns the mechanics of the text itself Were the cipher alphabets unknown, mixed far as concerns the mechanics of the text itself Were the clpher alphabets unknown, mixed alphabets, the explanation of the κ test would also have been unchanged in the slghtest particular But, as stated before, the four messages actually represent encipherments by means of an intelligible running key, by reversed standard alphabets, they will now be used to illustrate the solution of cases of this sort
c Assuming now that the cryptanalyst is fully aware that the enemy is using the runningkey system with reversed standard alphabets (obsolete U S Army cipher disk), the method of solution outhed n paragraph 38 WI PN HUFRK SAUQA The referred to above, that beginning PGLPN HUFRK SAUQQ The word DIVISION will be taken as a probable word and tested agamst the key, beginning with the very first letter of the message Thus
Clpher text
PGLPNHUFRKSAUQQ
Assumed plain tex
DIVIS

The resultant key text is unintelligible and the word DIVISION is shifted one letter to the right Clpher text. \qquad PGLPNHUFRKSAUQQ
Assumed plain text
Resultant key text DIVISION
Resultant key text ..----------- J T K
Agan the resultant key text is unintelligible and the hypothetical word DIVISION is shifted once more Contmuation of this process to the end of the message proves that the word is not present Another probable word as assumed REGIMENT When the point shown below is reached, note the results

Cipher text
Cıpher text---.-.--PGLPNHUFRKSAUQQ..
Resultant \qquad REGIMENT It certainly looks as though intelligible text were being obtained as key text The words LAND OF T suggest that THE be tried The key letters HE give NO, making the plan text read REGINENT NO The four spaces preceding REGIMENT suggest such words as HAVE, SEND, MOVE, THIS, etc A clue may be found by assuming that the E before LAND in the key is part of the word THE Testing it on the cipher text gives is for the plain text, for the first l . tmuing until the entire message and the key text have been reconstructed
d Thus far the demonstration has employed but one of the four messages available for solution When the reconstruction process is apphed to all four simultaneously it naturally goes much faster, with reduced necessity for assuming words after an mintall entering wedge has
been driven into one message For example, note what happens in this case just as soon as the word REGIMENT is tried in the proper place

Key text----- ----------------								N	ID	D 0	O\|F						
$\text { No } 1\left\{\begin{array}{l} \text { Clpher text-------------------------- } \\ \text { Plain text } \end{array}\right.$	P	G								R M	K E S_{S}	${ }_{\text {S }}^{\text {S }}$ A					
								K	K	K T X	X R F A	F ${ }_{\text {a }}$	U	U	M		
$\text { No } 3\left\{\begin{array}{l} \text { Clpher text_----------------------- } \\ \text { Plain text } \end{array}\right.$		W					${ }_{N}^{N}$	${ }_{\mathbf{N}} \mathrm{H}$	H^{T}	T K I	I M T			A		Z	
$\text { No } 4\left\{\begin{array}{l} \text { Clpher text---------------------------- } \\ \text { Plain text } \end{array}\right.$			T	U						Q ${ }_{\text {N }}$ E	E E [Z				T	Y	

It is obvious that No 2 begins with FIELD TRAIN, No 3, with ROLLING KITCHEN, No 4 with ANTITANK GUN These words yeld additional key letters, the latter suggest additional plam text, and thus the process goes on until the solution is completed
e But now suppose that the key text that has been actually employed in encipherment is not intelligible text The process is still somewhat the same, only in this case one must have at least two messages in the same key For instead of checkng a hypothetical word (assumed to be present in one message) aganst the key, the same hes a check the goy the of being intellghble text, were a series of letters produced by applyng a rather complex transpoation to an orngnally intelligible key text Then f the word REGIMENT were assumed to be sition to an orginally intellgible key text Then if the word REGIMENT were assumed to be present in the proper place in message No 1 the resultant key letters would yield an unintellhgible
sequence But these key letters when apphed to message No 2 would nevertheless yield sequence But these key letters when apphed to message No 2 would nevertheless yield
IELDTRAI, when appled to message No 3, LINGKITC, and so on In short, the text of one message us checked against the text of another message or messages, if the orignally assumed word is sage rs checked agannst the text of another message or messages
correct, then plain text will be found in the other messages ${ }^{8}$

- Perhaps this 18 as good a place as any to make some observations which are of general interest in conneotion with the runnnig-key princuple, and which have no doubt been the subject of speculation on the part of some students Suppose a basice, unntelligible, random sequence of keying oharacters which is not derived from the
unteraction of two or more shorter keys and which never repeats is employed but once as a key for encipheiment interaction of two or more shorter keys and which never repeats is employed but once as a key for encupheiment
Can a cryptogram encaphered in such a system be solved? The answer to this question must unqualfifidy be this even of the cipher alphabets are known sequences, cryptanalytic science is certanly powerless to attack such a cryptogram Furthermore, so far as can now be discerned, no method of attack is likely ever to be devised Short of methods based upon the alleged phenomena of relepathy-the very objective existence of which 19
denied by most "sane" mivestigators today- 1 it is impossible for the present author to conceive of any way of attacking such a eryptogram

Ths is a case (and perhaps the only case) in which the mposssbiblty of cryptanalysis is mathematically demonstrable Two things ape involved in a complete solution jn mathematios not only must a satisfactory
(logical) answer to the problem be offered, but also it must be demonstrated that the answer offered is annuye (logical) answer to the problem be offered, but also it must be demonstrated that the answer offered 1s unquuf,
that 18, the only possible one (The mistake is often made that the latter phase of what constitutes a valld solution is overlooked-and this is the basic error which numerous alleged Bacon-Shakespeare "eryptographers" commit) To attempt to solve a cryptogram enciphered in the manner indicated 18 analogous to an attempt to find a unique solution for a single equation containing two unknowns, with absolutely no data avalable for
solution other than those given by that equation itself It 18 obvous that no unque solution 1 is possible in such solution other than those given by that equation 1tself it 18 obvious that no unque solution 1s possible in such
a case, smnce any one quantity whatseever may be chosen for one of the unknowns and the other will follow as a sonsecuence Therefore an infinte number of different answers, all equally vald, is possible In the case of a
f All the foregoing work is, of course, based upon a knowledge of the capher alphabets employed in the encipherment What if the latter are unknown sequences? It may be stated at once that not much could be done with but four messages, even after they had been superimposed correctly, for the most that one would have in the way of data for the solution of the indivedual columns of text would be four letters per alphabet-which is not nearly enough Data for solution by indurect symmetry by the detection of isomorphs cannot be expected, for no isomorphs are produced in this system Solution can be reached only if there is sufficient text to permit of the analysis of the columns of the superimposition daagram When there $1 s$ this amount of text there are also repetitions which afford bases for the assumption of probable words Only then, and after the values of a few clpher letters have been established can indirect symmetry be apphed to facilitate the reconstruction of the primary components- if used
g Even when the volume of text is great enough so that each column contams say 15 to 20 letters, the problem is still not an easy one But frequency distributions with 15 to 20 letter can usually be studied statisically, so that if two distributions present sumilar characterstics, the latter may be used as a basis for combining distributions which pertain to the same clpher alphabet The next section will be devoted to a detailed treatment of the implications of the last statement
cryptogram enciphered in the manner indicated, there is the equivalent of an equation with two unknowns, the key is one of the unknowns, the plain text is the other One may conjure up an infinte number of different plain texts and offer any one of them as a "solution"" One may even perform the perfectly meaningless labor
of reconstructung the "key" for this selected "solution", but ance there is no way of proving from the eryptogram of reconstructing the "key" "or this selected "solutuon", but since there per no was of proving from the cryptogram
tiself, or from the reoonstructed key (whoh is unnutelligble) whether the "solutuon" so selected is the ectua itself, or from the reconstructed key (whoh is unntellugble) whether the "solution" so selected is the aotual
plain text, all of the infinte number of "solutions" are equally valld Now since it is inberent in the very idea of cryptography as a practioal art that there must and can be only one actual solution (or plain text), and since none of this infinite number of different solutions can be proved to be the one and only correct solution, therefoie, our common sense rejects them one and all, and it may be sald that a cryptogram encuphered in the manner indicated 18 absolutely umpossable to solve
It is perhaps unnecessary to point out that the foregong statement is no longer true when the running key constitutes untellligible text, or if it is used to encipher more than one message, or if it is the secondary resultant of the interaction of two or mure short primary keys which go through cycles themselves For in these cases there additional information available for the delmitation of one of the par of unknows and hence s unique soluNow although
cryptographic security and is thg-key system described in the first paragraph reprosents the uitumate goal of wide abyss to be bydged betwideq theward which cryptographic experts have striven for a long time, there 1 s practical means of secret intercommunioation For the mere maily perficit system and its estabishment as a practical means of secret intercommunioation For the mere mechanioal detals involved in the production, ness of the method as a system of secret intercommunioation suitable for groups of correspondents engaged in a voluminous exchange of mossages

Station XII
THE "CROSS-PRODUCT SUM" OR " χ TEST""
Preliminary remarks The nature of the "Cr
55.
45. Prelimunary remarks.- a The real purpose of making the comoldence test in cases such as that studued in the preceding section is to permat the cryptanalyst to arrange his data so as to arcumvent the obstacle which the enemy, by adopting a complucated polyalphaberic scheme of vidually with the respectrve columns of the supermposition diagram the cryptenalyst has arranged the polyalphabetic text so that it can be handled as though it were monoalphabetic arranged the polyaiphabetic text so that it can be handled as though it were monoalphabetic
Usually, the solution of the latter is a relatively easy matter, especially if there is sufficient text in the columns, or if the letters withn certain columns can be combined into single frequency distributions, or if some cryptographic relationship can be establshed between the columns
b It is obvious that merely ascertaming the correct relative positions of the separate mesber a sencs of messages in a superimposition duagram is only a means to an end, and not an end in itself The purpose is, as already stated, to reduce the complex, heterogeneous, polyalphabetic text to sumple, homogeneous, monoalphabetic text But the latter can be solved only when there are sumicient data for the purpose-and that depends often upon the type of cupher alphabets involved The latter may be the secondary alphabets resulting from the slding of the normal sequence agaunst its reverse, or a muxed component against the normal, and so on The student has enough information concerning the various cryptanalytic procedures which may be appled, depending upon the carcumstances, in reconstructing different types of primary components and no more need be said on this score at this point
c The student should, however, realze one pount which has thus far not been brought specifically to his attention Although the superimposition dagram referred to in the preceding subparagraph may be composed of many columns, there is often only a relatively small number 26 letters each there is a maximum of 26 secondary cipher alphabets Consequently, it follows that in such a case if a supermposition dragram is composed of say 100 columns, certan of those columns must represent simular secondary alphabets There may, and probably will be, no regularity of recurrence of these repeated secondaries, for they are used in a manner directly governed by the letters composing the words of the key text or the elements composing the keying sequence
d But the latter statement offers an excellent clue It is clear that the number of times a given secondary alphabet is employed in such a superimposition diagram depends upon the com-
${ }^{1}$ The χ test, presented in this section, as well as the Φ test, presented in Section XIV, were first described in an umportant paper, Statzothcal Methods an Cryptanalysas, 1935, by Solomon Kullback, Ph D, Aere Arssociate Crypt-
 analyat, signal Intelligence Service I take pleasure in acknowledging my indebtecness to Dr Kullback's
paper for the basie materal used in my own exposition of these tests, as well as for his halpful criticesma thereof
whule in manuacript
position of the key text Since in the case of a running-key system using a book as a key the key text constitutes intellgible text, it follows that the varrous secondary alphabets will be em ployed wuth frequencres which are directly related to the respective frequencres of occurrence of letter in normal plain text Thus, the alphabet corresponding to key letter E should be the most frequently used, the alphabet corresponding to key letter T should be next in frequency, and so on From this it follows that instead of being confronted with a problem involing as many different secondary chpher alphabets as there are columns in the supernmposition dagram, the cryptmone that the cryptanaly will beve to hadlo only about 10 or 20 secondery alphabet Mon
e for the umposition diagram with a new to assembling those distributions which belong to the same cipher alphabet, thus makng the actual detarmination of values much easior in the combined distributions than would otherwise be the case
f However, if the keyng sequence does not itself constitute intelligible text, even if it is a random sequence, the case is by no means hopeless of solution-provided there is sufficien text within columns so that the columnar frequency distributions may afford indications enabling the cryptanalyst to amalgamate a large number of small distributions into a smaller number of larger distributions
g In this process of assemblng or combining individual frequency distributions which be long to the same cipher alphabet, recoune may be had to a procedure merely alluded to in con nection with previous problems, and designated as that of "matching" distributions The next few paragraphs will deal whth this umportant subject

46 The nature of the "Cross-product sum" or " x (Chr) test" in cryptanalysis - a The student has already been confronted with cases in which it was necessary or desirable to reduce a large number of frequency distributions to a smaller number by identifying and amalgamating distributions which belong to the same cupher alphabet Thus, for example, in a case in which there are, say, 15 distributions but only, say, 5 separate cipher alphabets, the dificulty in solving al they apply

This process of adentufying distributions which belong to the same cipher alphabet in volves a careful examination and comparison of the various members of the entire set of distributions to ascertain which of them present sufficiently sumilar characteristics to warrant their being combined into a single distribution applicable to one of the cipher alphabets involved in or 60 letters, the matter is relatively easy for the experienced cryptanalyst and can be made by the eye, but when the distributions are small, each contaming a rather small number of lettera ocular comparison and identification of two or more distributions as belonging to the same alphebet become quite difficult and often inconclusive In any event, the tume required for the suc cessful reduction of a multiplicity of mdividual small distributions to a few larger distribution is, in such cases, a very material factor in determing whether the solution will be accomplished in time to be of actual value or merely of historical interest
c However, a certam statistical test, called the "cross-product sum" or " x test", has been devised, which can be brought to bear upon this question and, by methods of mathematica comparison, elminate to a large degree the uncertannties of the ocular method of matching and combining frequency distributions, thus in many cases materially reducing the time required for solution of a complex problem
d It is advisable to point out, however, that the student must not expect too much of a mathematical method of comparing distributions, because there are limits to the size of distribuions to be matched below which these methods will not be effective If two distribution contan some sumlar characteristics the mathematical method will merely afford a quantitative measure of the degree of sumilarity Two distributions may actually pertain to the same cipher alphabet but, as occasionally happens, they may not present any external evidences of relationship, in which case no mathematical method can indicate the fact that the two distribuone are sumer and bolong to the allo
47. Derivation of the x test -a Consider the following plain-text distribution of 50 letters

In a prenous text ${ }^{2}$ it was shown that the chance of drawing two identical letters in normal English telegraphic plann text is the sum of the squares of the relative probabilities of occurrence of the 26 letters in such text, which is 0667 That is, the probability of monographic coincidence ton of 50 letters apphes, the number of possible parings (comparisons) that can be made between single letters is $\frac{50 \times 49}{2}=1,225$ According to the theory of councidences there should, therefore be $1,225 \times 0667=817065$ or approximately 82 comeridences of single letters Examining the distribution it is found that there are 83 comeidences, as shown below

The actual number of concidences agrees very closely with the theoretical number, which is of course to be expected, since the text to which the distribution appled has been indicated as beng normal plain text
b In the foregoing simple demonstration, let the number of comparisons that can be made in the distribution be indicated symbolically by $\frac{N(N-1)}{2}$, where $N=$ the total number of letters in the distribution Then the expected number of coincidences may be written as $\frac{0067 N(N-1)}{2}$, which may then be rewritten as
c Lakewise, if f_{A} represents the number of occurrences of A in the foregoing distribution, then the number of comcidences for the letter A may be inducated symbolically by $\frac{f_{4}\left(f_{A}-1\right)}{2}$ And sumularly, the number of comcidences for the letter B may be indicated by $\frac{f_{B}\left(f_{B}-1\right)}{2}$, and so on down to $\frac{f_{z}\left(f_{z}-1\right)}{2}$ The total number of actual concidences found in the distribution is, of course, the sum of $\frac{f_{A}\left(f_{A}-1\right)}{2}+\frac{f_{B}\left(f_{B}-1\right)}{2}+\quad \frac{f_{Z}\left(f_{7}-1\right)}{2}$ If the symbol f_{θ} is used to inducate any of the letters $A, B, \quad Z$, and the symbol Σ is used to indicate that the oum of all the 2 Mziltary Cryptanalyss, Part II, Appendix 2
elements that follow this sign is to be found, then the sum of the actual conncidences noted in the distribution may be indicated thus $\sum \frac{f_{\theta}\left(f_{\theta}-1\right)}{2}$, which may be rewritten as
(II)

$$
\sum \frac{f_{0}^{2}-f_{\mathrm{e}}}{2}
$$

d Now although derived from different sources, the two expressions labeled (I) and (II) above are equal, or should be equal, in normal plaın text Therefore, one may write

Smplifying this equation
(III)
$\sum \frac{f_{0}{ }^{2}-f_{0}}{2}=\frac{0667 N^{2}-0667 N}{2}$
$\Sigma f_{\mathrm{e}}{ }^{2}-\Sigma f_{\mathrm{e}}=0667 \mathrm{~N}^{2}-0667 N$
Therefore $y_{i}=N$
(V) on reduction becomes

$$
\Sigma f_{6}^{2}-N=0667 N^{2}-0667 N
$$

(V)

$$
\Sigma f_{\theta^{2}}=0667 N^{2}+9333 N
$$

This equation may be read as "the sum of the squares of the absolute frequencies of a distribution is equal to 0667 times the square of the total number of letters in the distribution, plus 9333 is equal to 0667 times the square of the total number of letters in the distribution, plus 9333
times the total number of letters in the distribution " The letter S_{2} is often used to replace the symbol $\Sigma f_{9}{ }^{2}$
f Suppose two monoalphabetic distributions are thought to pertan to the sume cupher alphabet Now if they actually do belong to the same alphabet, and if they are correctly ${ }^{3}$ combined into a single distribution, the latter must still be monoalphabetic in character That is, again representing the individual letter frequencies in one of these distributions by the general symbol $f_{e_{1}}$ the individual letter frequencies in the other distribution by $f_{\theta_{2}}$, and the total frequencr in the first distribution by N_{1}, that in the second distribution by N_{2}, then
(VI)

$$
\Sigma\left(f_{\mathrm{e}_{1}}+f_{\mathrm{e}_{2}}\right)^{2}=0667\left(N_{1}+N_{2}\right)^{2}+9333\left(N_{1}+N_{2}\right)
$$

Expanding the terms of this equation
(VII) $\quad \Sigma f_{e_{1}}{ }^{2}+2 \Sigma f_{\theta_{1}} f_{\theta_{2}}+\Sigma f_{\theta_{2}}{ }^{2}=0667\left(N_{1}{ }^{2}+2 N_{1} N_{2}+N_{2}{ }^{2}\right)+9333 N_{1}+9333 N_{2}$

But from equation (V)

$$
\begin{aligned}
& \Sigma f_{f_{1}}{ }^{2}=0667 N_{1}{ }^{2}+9333 N_{1} \text { and } \\
& \Sigma f_{\theta_{2}}{ }^{2}=0667 N_{2}^{2}+9333 N_{2},
\end{aligned}
$$

so that equation (VII) may be rewritten thus

$$
0667 N_{1}^{2}+9333 N_{1}+2 \Sigma f_{\theta_{1}} f_{\theta_{2}}+0667 N_{2}{ }^{2}+9333 N_{2}=
$$

$$
0667\left(N_{1}^{2}+2 N_{1} N_{2}+N_{2}^{2}\right)+9333 N_{1}+9333 N_{2}
$$

$\stackrel{{ }^{3} \text { By "correctly" is meant that the two distributions are slid relative to each other to their proper super- }}{\text { imposition }}$

Reducing to simplest terms by cancelling out sumular expressions

$$
2 \Sigma f_{\theta_{1}} f_{\theta_{2}}=0667\left(2 N_{1} N_{2}\right), \text { or }
$$

(VIII)

$$
\frac{\Sigma f_{e_{1}} f_{\theta_{2}}}{N_{1} N_{2}}=0667
$$

g The last equation thus permits of establishnng an expected value for the sum of the products of the corresponding frequencres of the two distrıbutions being considered for amalgamation The cross-product sum or x test for matching two drstributions is based upon equation (VIII)

48 Applying the χ test in matching distributions - a Suppose the following two distributions are to be matched

Let the frequencies be juxtaposed, for convenence in finding the sum of the cross products Thus•

In this case $\Sigma f_{e_{1}} f_{e_{2}}=8+3+1+1+9+2+2+4=30$

$$
\begin{aligned}
& N_{1} N_{2}=26 \times 17=442 \\
& \frac{\Sigma f_{e_{1}} f_{2_{2}}}{N_{1} N_{2}}=\frac{30}{422}=0711
\end{aligned}
$$

b The fact that the quotient (0711) agrees very closely with the expected value (0667) means that the two distributions very probably belong together or are properly matched Not the qualifyng phrase "very probably" It imphes that there is no certanty about this business of matching distributions by mathematical methods The mathematics serve only as measuring devices, so to speak, which can be employed to measure the degree of simularity that exists
c Instead of dividng $\Sigma f_{\theta_{1}} f_{\theta_{2}}$ by $N_{1} N_{2}$ and seeing how closely the quotient approximates the value 0667 or 0385 , one may set up an expected value for $\Sigma f_{f_{1}} f_{e_{2}}$ and compare it with the observed value Thus, in the foregoing example $0667\left(N_{1} N_{2}\right)=0667 \times 422=2815$, the observed value of $\Sigma f_{\theta_{1}} f_{\theta_{2}}$ is 30 and therefore the agreement between the expected and the observed values is quite close, indicating that the two distributions are probably properly matched
d There are other mathematical or statistical tests for matching, in addition to the x test Moreover, it is possible to go further with the x test and find a measure of the relance that may be placed upon the value obtained, but these points will be left for future discussion in subsequent texts
e One more point will, however, here be added in connection with the χ test Suppose the very same two distributions in subparagraph a are again juxtaposed, but with $f_{e_{3}}$ shifted one interval to the left of the position shown in the subparagraph of reference Thus

$$
\text { Here } \Sigma f_{\Theta_{1}} f_{\Theta_{2}}=2+3+2+3=10 \quad \text { and } \quad \frac{\Sigma f_{e_{1}} f_{\theta_{2}}}{N_{1} N_{2}}=\frac{10}{442}=0226
$$

The observed ratio (0226) is so much smaller than the expected (0667) that it can be sand that if the two distributions pertain to the same primary components they are not properly superimposed In other words, the x test may also be applhed in cases where two or more frequency distributions must be shafted relatively in order to find their correct supermposition The theory underlying this applcation of the χ test is, of course, the same as before two monoalphabetic distributions when properly combined will yreld a single distribution which should still be monoalphabetic in character In applyng the x test in such cases it may be necessary to shift two 26 -element distributions t various supermpositions, make the x test for each superimposition, and take as correct that on which yalds the best value for the test

The nature of the problem will, of course, determine whether the frequency distribution which are to be matched should be compared (1) by drect superimposition, that is, setting the A to 2 in subparagreph or (2) by shifted opposite the corresponding tallies of the other distribuno first distribution fired and shding the whole sequence of talles of the second distributon to various supermmpositions aganst the first

Settion XIII

APPLYING THE CROSS-PRODUCT OR χ TES

Study of a situation in which the x test may be appled. Paragraph
49 Solution of a plogressive-alphabet system bv means of the x test 50
a Thed in matching frequency distributions may bow bet before th of how the x-test is apphed in matching frequency distributions may ined according to th progressive-alphabet system (par 36b), with secondary alphabets derived from the interaction of two identical muxed primary components It will be assumed that the enemy has been using a system of this kind and that the primary components are changed daily
b Before attacking an actual problem of thas type, suppose a few minutes be devoted to a general analysis of its elements It is here assumed that the primary components are based upon the HYDRAULIC Z sequence and that the capher component is shfted toward the nght one stop at a tme Consider a cipher square such as that show the form a aphicable to the type of problem undtal sequences are all identical but merely shofted relatively, the letters inside the square are plann-text letters
Alphabet No
AULICBEFGJKMNOPQSTVWXZHYDR
BEFGJKMNOPQSTVWXZHYDRAULIC
$\begin{aligned} & \text { BEFEGGJKMNOPQSTVWXZHYDRAULI } \\ & \text { CBM }\end{aligned}$
$\begin{aligned} & \text { CBEFGKMNOPQSTVNXZHYDRAULI } \\ & \text { DRAULCBEFGJKMOPQSTVWXZHY }\end{aligned}$
$\begin{array}{ll}\text { ERGJKMNOPQSTVWXZHXDRAULICB } \\ \text { E }\end{array}$
FGJKMNOPQSTVWXZHYDRAULICBE
G JKMNOPQSTVWXZHYDRAULICCBEF
I I CBEFGJKMNOPQSTVWXZHYDRAUL
J JKMNOPQSTVWXZHYDRAULICBEFG
NOPQSTVWXZHYDRAULICBEFGJKM
$\begin{aligned} & \text { RAULICBEFGJKMNOPQSTVWXZHYD } \\ & \text { STVWXZHYDRAULICBEFGJKMNOP }\end{aligned}$
ULICBEFGJKMNOPQSTVWXZHYDRA
VWXZHYDRAULICBEFGJKMNOPQRA
WXZHYDRAULICBEFGJKMNOPQSTV
XZHYDRAULICBEFGJKMNOPQSTVW
$\begin{array}{lll}X Z H Y D R A C L I C B E F G J K M N O P Q S T V W \\ Y D R A U L I C B E F G J K M N O P Q S T V W X Z H\end{array}$
YDRADLICBEFGJKMNOPQSTVWXZH
［Plain text letters are withn the square proper］

Flouri 12
c If，for mere purposes of demonstration，instead of letters within the cells of the square there are placed tallies corresponding in number with the normal frequencies of the letters occupyng the respective cells，the cipher square becomes as follows（showing only the lst three rows of the square）

Alphabet No

A	z		左			等				三		$=$		E				ミ		
B	若					莫	E			文				三						
C		夛	\approx				\equiv									$=$		実		E

Flaver 13a

It is obvious that here is a case wherein if two distributions pertaning to the square are isolated from the square，the x test（matching distributions）can be applied to ascertain how the to yeld a monoalphabetie composite To each other so that they can be superimposed and made posubilites In this case，the B row of talles must be displaced 5 intervals to the urht m orde to match it and amalgamate it with the A row of tallies Thus

e Note that the amount of displacement，that is，the number of intervals the B sequence must be shifted to make it match the A sequence in Figure 13b，corresponds exactly to the distance must be shifted ote make it match the A sequence in fetters A and in the primary cipher component，which is 5 intervals Thus
$\begin{array}{llllllll}0 & 1 & 2 & s & 4 \\ A & U & \text { L } \\ I & C & \text { B }\end{array} \quad$ The fact that the primary plain component is in thus case identical with the primary cipher component has nothing to do with the matter The displacement interval is being measured on the copher component It is important that the student see thus point very clearly He can，if he like，prove the point by expermenting with two different primary com－ ponents
f Assuming that a message in such a system is to be solved，the text is transcribed in rows of 26 letters A unditeral frequency distribution is made for each column of the transcribed text，the 26 separate distributions being compiled within a single square such as that shown in Figure 14 Such a square may be termed a frequency drstrbution square
g Now the vertical columns of tallies within such a distribution square constitute frequency distributions of the usual type They show the distribution of the various capher letters in each
 cmple principles of monoalphabetic frequency But what do the horizontal rows of talle within the square represent？Is it not clear that the first such row，the A row，merely shows the distribution of A_{c} throughout the successive capher alphabets？And does not thrs graphuc pucture distribution of A_{c} throughout the successive cipher alphabets？And does not thrs graphre pucture
of the dustrubution of A_{c} correspond to the sequence of letters composing the primary plain component？ of the distribution of A_{o} correspond to the sequence of letters composing the prumary plain component？
Furthermore，is it not clear that what has been said of the A row of talles applies equally to the Furthermore，is it not clear that what has been said of the A row of talles apphes equally to the
B，C，D， Z rows？Finally，is not clear that the graphic pictures of all the distinbutions correspond to the same sequence of letters，except that the sequence begins with a different letter in each row？In other words，all the horizontad rows of talles within the distribution square apply to the same sequence of plain－text letters，the sequences in one row merely beginning with a dfferent letter from that with which another row begins The sequences of letters to which the tallies apply in the various rows are merely displaced relative to one another Now if there are sufficient data for statistical purposes in the various horizontal sequences of tallies within the distribution square，these sequences，being approximately similar，can be studied by means of the χ test to find their relative displacements And in finding the latter a method is provided whereby the prrmary cipher component may be reconstructed，since the correct assemblng of the displacement data will yield the sequence of letters constituting the primary cipher component If the plain component is identical with the cipher component，the solution is immediately at
hand, if they are defferent, the solution is but one step removed Thus, there has been elabo rated a method of solving this type of cipher system without making any assumptions of values for cipher letters

$$
\begin{aligned}
& \text { cipher letters } \\
& 50 \text { Solution }
\end{aligned}
$$

cryptogram has be progressive-alphabet system by means of the χ test - a The following cryptogram has been enciphered according to the method indicated, by progressive, sumple, component

W G J J M	M	DGCOC	FTR P B	M I I I K	R Y N N
B U	WWWY0	IHFJK	0 KHT	A CCLJ	EPPFR
W	FFGE	PQRYY	IW WMX	UDIPF	EXMLL
WFKGGY	B B X	HBFY I	ETXHF	BIVDI	PNXIV
RPWTM	G I M P T	ECJBo	KVBUQ	GVGFF	F K L y y
CKBIW	XMXUD	IPFFU	Y N V S S	I HRMH	Y ZHAU
Q W GK T	UXY J	J A OWZ	0 CFTR	PPOQ	S G Y CX
$\checkmark \mathrm{CXUC}$	LMLL	YEKFF	ZVQJQ	SIYS	DSBBJ
UAHYN	L 0 C X	SDQVC	YVSIL	IW N J	0 MAQQS
LTY J G	TVPQK	PKTLH	SROON	ICFE	M NVWN
BNEHA	MRCRO	VSTXE	NHPVB	TWKUQ	I OCAV
WBRQN	JVNR	V DOPU	Q R L K Q	NFFFZ	PHUR
WLXGS	Q W $\mathrm{H} P$	JBCNN	JQSOQ	ORCBM	RRA0
R	Y C	D GS J C	TGPGR	MIQMP	SGCTN
M	EDGCo	PTGPW	Q Q VQI	WXTTT	COJVA
AABWM	X I H OW	HDEQU	A INFK	FW H P J	A H Z T
WZKFE	XSRUY	QIOVR	ERDJV	D K H IR	Q WE
EBYBM	LABJV	TGFFG	X Y I V G	RJYEK	FBE
JOUAH	CUGZL	X IA J K	WDVTY	BFRU	C C U Z Z
INNDF	R J FMB	HQLXH	M H Q Y Y	YM W Q	CLIPT
WTJYQ	BYRLI	TUOUS	RCDCV	W DGI	GUBHJ
VVPWA	BUJKN	FPFYW	VQZQF	LHTW	PDRXZ
0 WUSS	GAMHN	CWHSW	WLRYQ	QUSZ V	DNXAN
VNKHF	UCVVS	SSPLQ	UPCVV	VWDGS	J OGTC
HDEVQ	SIJPH	Q JAWF	RIZDW	XXHCX	Y C TMG
USESN	DSBBK	RLVWR	VZEEP	PPAT0	IANEE
EEJNR	C Z $\mathrm{BTB}^{\text {¢ }}$	L X P J J	K A P PM	JEGIK	RTGFF
H	Y K J E	HQSXJ	Q DYV Z	GRRHZ	QLYXK
XAZOW	R R X Y K	Y G M G Z	BYNVH	Q BRVF	EFQLL
WZEYL	JEROQ	SOQKO	MWIOG	M BKFF	LXDXT
LWIL	QSEDY	IOEMO	I BJML	N N S Y	X J Z J M
LCZBM	SDJWQ	XtJVL	FIRNR	XHYBD	B J UFI
R J ICT	UUUSK	K W D VM	FWTTJ	KCK C	CVSAG
Q BCJM	EbY $\mathrm{N} V$	S S J K S	DCBDY	K	DWZMT
BPVTT	C GBVT	ZKHQD			

6 The message is transcribed in lines of 26 letters, since that is the total number of secondary alphabets in the system The transcribed text is slown below

	WGJJMMMJXEDGCOCFTRPBMIIIKZ
2	RYNNBUFRWWWWYOIHFJKOKHTTAZ
3	CLJEPPFRWCKOOFFFGEPQRYYIWX
4	MXUDIPFEXMLLWFKGYPBBXCHBF'
5	IETXHFBIVDIPNXIVRPWTMGIM
6	ECJBOKVBUQGVGFFFKLYyCKBI
7	MXUDIPFFUYNVSSIHRMHYZHAU
8	GKTIUXYJJAOWZOCFTRPPO
9	CXVCXUCJLMLLYEKFFZV
10	PDSBBJUAHYNWLOCXSDQVCYVS
11	IWNJOOMAQSLWYJGTVPQKPKTL
12	ROONICFEVMNVWNBNEHAMRCRO
13	TXENHPVBTWKUQIOCAVWBRQNFJ
14	NRVDOPUQRLKQNFFFZPHURVWLX
15	SHQWHPJBCNNJQSOQORCBMRRAO
16	RKWUHYYCIWDGSJCTGPGRMIQMPS
17	GCTNMFGJXEDGCOPTGPWQQVQIWX
18	COJVAAABWMXIHOWHDEQU
19	FKFWHPJAHZITWZKFEXSRUYQ
20	RERDJVDKHIRQWEDG
21	TGFFGXXIVGRJYEKF
22	UGZLXIAJKWDVtybrr
23	QLXHMHQYYYMWQ
24	RLITUOUSRCDCVW
25	GGUBHJVVPWABUJKNFPFYWVQZ
26	LHTWJPDRXZOWUSSGAMHNCWHS
27	LRYQQUSZVDNXANVNKHFUCVVSSS
28	PLQUPCVVVWDGSJOGTCHDEVQSIJ
29	PHQJAWFRIZDWXXHCXYCTMGUSES
30	B BKRLVWRVZEEPPPATOIANEE
31	EEJNRCZBTBLXPJJKAPPMJEGIKR
32	TGFFHPVVVYKJEFHQSXJQDY
33	RHZQLYXKXAZOWRRXYKYGMGZ
34	VHQBRVFEFQLLWZEYLJE
35	OMWIOGMBKFFLXDXTLWILPQS
36	LNNSYKXJZJMLCZBMS
37	IRNRXHYBDBJU
38	I CTUUUSKKWDVMFWTTJKCKCGC
39	AGQBCJMEBYNVSSJKSDCBDYF
40	FDWZMTBPVTTCGBVTZKHQDDRMEZ

c A frequency distribution square is then compled, each column of the text forming a separate distribution in columnar form in the square The latter is shown in figure 14

The x test will now be apphed to the horizontal rows of talles in the distribution square in accordance with the theory set forth in paragraph 49 g Since this test is purely statistical in character and becomes increasingly reliable as the size of the distributions increases, it is best to start by workng with the two distributions having the greatest total numbers of tallies These are the V and W distributions, with 53 and 52 occurrences, respectively The results of three relative displacements of these two distributions are shown below, labeled "First test," "Second test," and "Third test "

$$
F_{\text {ingt }} \text { Tist }
$$

$\operatorname{fr}\left\{\begin{array}{llllllllllllllllllllllllll}1 & 0 & 2 & 0 & 0 & 2 & 6 & 4 & 8 & 0 & 0 & 7 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 6 & 4 & 0 & 2 & 4 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 53\end{array}\right.$

$$
\frac{2 f f^{\prime} f_{w}}{N_{V} N_{W}}=\frac{103}{2756}=037
$$

Sicond Test
$f_{v}\left\{\left.\begin{array}{lllllllllllllllllllllllll|l}1 & 0 & 2 & 0 & 0 & 2 & 6 & 4 & 8 & 0 & 0 & 7 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 6 & 4 & 0 & 2 & 4 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26\end{array} \right\rvert\, \begin{array}{l}N_{V}=53\end{array}\right.$

$$
\frac{\sum f_{r} f_{w}}{N_{r} N_{W}}=\frac{122}{2756}=044
$$

Third Test
$f_{v}\left\{\begin{array}{lllllllllllllllllllllll|l}1 & 0 & 2 & 0 & 0 & 2 & 6 & 4 & 8 & 0 & 0 & 7 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 6 & 4 & 0 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 0 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 2 & 2 & 23 & 24 \\ \hline\end{array}\right.$ (080 $f_{w}\left\{\begin{array}{lllllllllllllllllllllllllll}4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 1 & 2 & 3 \\ 3 & 0 & 1 & 0 & 0 & 2 & 8 & 1 & 7 & 6 & 0 & 1 & 0 & 0 & 2 & 3 & 0 & 2 & 1 & 2 & 0 & 4 & 2 & 1 & 1 & 5\end{array}\right] \quad N_{w}=52$

$$
\frac{\Sigma f_{v f} f_{w}}{N_{\nabla} N_{m}}={ }_{275 \mathrm{~b}}^{190}=069
$$

e Since the last of the three foregoing tests gives a value somewhat better than the expected 0667 , it looks as though the correct position of the W distribution with reference to the V distribution has been found In practice, several more tests would be made to insure that other close approximations to 0667 will not be found, but these will here be omitted The test mincates that the primary cipher component has the letters V and W in these positions V W, since the correct supermmposition requires that the 4th cell of the \mathbb{W} distribution must be placed under the 1st cell of the V distribution (see the last superimposition above)
f The next best distribution with which to proceed is the F distribution, with 51 occurrences Parallelng the procedure outhned in paragraph 43, and for the same reasons, the F sequence is matched against the W and V sequences separately and then against both W and V sequences distributions
$f_{v}\left\{\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrr}1 & 0 & 2 & 0 & 0 & 2 & 6 & 4 & 8 & 0 & 0 & 7 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 6 & 4 & 0 & 2 & 4 & N_{V}=53\end{array}\right.$ $f_{F} 891011121314151617181920212223242526$

$$
\frac{2 f_{v} f_{F}}{N_{r} N_{r}}=\frac{212}{2,703}=078
$$

$f_{W}\left\{\left.\begin{array}{lllllllllllllllllllllllll}1 & 1 & 5 & 3 & 0 & 1 & 0 & 0 & 2 & 8 & 1 & 7 & 6 & 0 & 1 & 0 & 0 & 2 & 3 & 0 & 2 & 1 & 2 & 0 & 4 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\ 26\end{array} \right\rvert\, \begin{array}{ll}N_{W}=52\end{array}\right.$ $f_{r}\left[\begin{array}{lllllllllllllllllllllllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 1 & 2 & 3 & 4 \\ 0 & 3 & 7 & 1 & 1 & 2 & 1 & 0 & 0 & 6 & 3 & 9 & 3 & 0 & 2 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 2 & 0 & 4 & 2\end{array}\right.$

$f(v+w)\left\{\left.\begin{array}{llllllllllllllllllllllllll}4 & 0 & 3 & 0 & 0 & 4 & 14 & 5 & 15 & 6 & 0 & 8 & 0 & 0 & 4 & 4 & 1 & 3 & 2 & 3 & 0 & 10 & 6 & 1 & 3 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26\end{array} \right\rvert\, \begin{array}{l}N_{1}+\boldsymbol{w}=105\end{array}\right.$ $f_{F}\left[\begin{array}{llllllllllllllllllllllllll}8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 1 & 2 & 1 & 0 & 0 & 6 & 3 & 9 & 3 & 0 & 2 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 2 & 0 & 4 & 2 & 0 & 3 & 7\end{array}\right]$

$\frac{2 f_{(\nabla+m)^{\prime}} f_{r}}{N_{\left(T+W_{2}\right)} N_{r}}=\frac{422}{5,355}=079$

The test yelds the sequence | 1 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| V | 2 | 3 | 4 | 5 | 0 | 7 |
| W | | | | F | | |

g The process is continued in the foregoing manner untul the entire primary cipher component has been reconstructed It is obvious that as the work progresses the cryptanalyst is forced to employ smaller and smaller distributions, so that statistically the results are apt to become less and less certan But to counterbalance this there is the fact that the number of possible supermpositions becomes progressively smaller as the work progresses For example, sequence arinst the first is 25 , 1 a tained and a 6 th distribution is to be placed in the prime 5 drie being reconstructed there are 21 possible positions, after the relatio positions of 20 distributions have been asced, ther are 21 are only 6 possable positan for the 21st distribution, and an on there are only porsible positions for the 21st distributio, and so on
foregoing case the completely reconstructed primary cipher component is as

Since it was stated that the problem involves identical primary components, both components are now at hand
\imath Of course, it is probable that in practical work the process of matching distributions would be interrupted soon after the positions of only a few letters in the primary component had been ascertained For by trying partially reconstructed sequences on the cipher text the skeletons of some words would begin to show By fillng in these skeletons with the words suggested by them, the process of reconstructing the components is much faclitated and hastened certan their initial position in enciphering the message It is only necessary to juxtapose two components so as to give "good" values for any one of the vertical distributions of Figure 14 This then gives the juxtaposition of the components for that column, and the rest follows 14 easuly for the plam text may now be obtaned by drect use of the components. The plan text of the message is as follows
WG JJMMMJXEDGCOCFTRPBMIIIKZ
WITHTHEIMPROVEMENTSINTHEAI
RYNNBUFRWWWWYOIHFJKOKHTTAZ
RPLANEANDTHEMEANSOFCOMMUNI
C L J EPPFRWCKOOFFFGEPQRYYIWX
CATIONANDWITHTHEVASTSIZEOF
MXUDIPFEXMLLWFKGYPBBXCHBFY
MODERNARMIESSTRATEGICSURPR
IETXHFBIVDIPNXIVRPWTMGIMPT
ISEWILLBECOMEHARDERANDHARD
ECJBOKVBUQGVGFFFKLYYCKBIWX
ERTOATTAINXINTHEPRESENCEOF
$\begin{aligned} & \text { MXUDIPFFUYNVSSIHRMHYZHAUQW } \\ & M O D E R N A V I A T I O N A N D F A S T M O V I N\end{aligned}$
MODERNAVIATIONANDFASTMOVIN
GKTIUXYJJAOWZOCFTRPPOQUSGY
GMECHANIZEDELEMENTSGREATER
CXVCXUCJLMLLYEKFFZVQJQSIYS
COMPLEXITIESMORESUBTLEDECE
$\begin{array}{llllll}P & D & B & B & J & U\end{array}$
$\begin{aligned} & \text { PTIONSSTRATEGEMSANDFEINTSW } \\ & \text { IWNJOOMAQSLWYJGTVPQKPKTLHS }\end{aligned}$
$\begin{aligned} & \text { IWNJOOMAQSLWYJGTVPQKPKTLHS } \\ & \text { ILLHAVETOBEEMPLOYEDXINMODE }\end{aligned}$
ROONICFEVMNVWNBNEHAMRCROVS
RNWARFAREITISSTILLPOSSIBLE
13 TXENHPVBTWKUQIOCAVWBRQNFJV
$\begin{aligned} & \text { TXENHPVBTWKUQIOCAVWBRQNFJV } \\ & \text { TOGAINTACTICALSURPRISEBYMA }\end{aligned}$
14
NYMDOPUQRLKQNFFFZPHURVWLXG
15 SHOANSXHILETHEMEANSOFOBS
$\begin{aligned} & \text { SHQWHPJBCNNJQSOQORCBMRRAON } \\ & \text { SERVINGANDTRANSMITTINGINFO }\end{aligned}$
 RMATIONOIWDGSJCTGPGRMIQMPS GCTNMFGJXEDGCOPTGPWQQVQIWX GREATLYIMPROVEDOVERTHOSEOF TTTCOJVAAABWMXIHOWHDEQUAIN TTTCOUVAAABWMXIHOWHDEQUAIN
THEPASTTHEMECHANTCALMEANS O FKFWHPJAHZITWZKFEXSRUYQIOV FMOVINGTROOPSARELIKEWISEFA RERDJVDKHIRQWEDGEBYBMLABJV RSPEEDIERXALSOFALSEINFORMA TGFFGXYIVGRJYEKFBEPBJOUAHC TIONCANBEFARMOREEASILYANDQ UGZLXIAJKWDVTYBFRUCCCUZZIN UICKLYDISTRIBUTEDXTHELESSO NDFRJFMBHQLXHMHQYYYMWQVCLI NTOBELEARNEDFROMTHEOPENING PTWTJYQBYRLITUOUSRCDCVWDGI GGASEOFALLENBYSBATTLEOFMEG GGUBHJVVPWABUJKNFPFYWVQZQF
GIDOISTHATSURPRISEISPOSSIB LHTWJPDRXZOWUSSGAMHNCWHSWW LEEVENINMODERNWARFAREBUTON LRYQQUSZVDNXANVNKHFUCVVSSS LYBYPERFECTDISCIPLINEONTHE PLQUPCVVVWDGSJOGTCHDEVQSIJ
PARTOFTHETROOPSANDALMOSTS U PHQJAWFRIZDWXXHCXYCTMGUSES PERHUMANFORETHOUGHTANDATTE NDSBBKRLVWRVZEEPPPATOIANEE
 EE JNRCZBTBLXPJJKAPPMJEGIKR ESTAFFBACKEDUPBYRESOLUTEAC TGFFHPVVVYKJEFHQSXJQDYVZGR
TIONTNTHEAIRXTOMAINTAINSEC RHZQLYXKXAZOWRRXYKYGMGZBYN RECYMOVEMENTSMUSTBEUNDERCO VHQBRVFEFQLLWZEYLJEROQSOQK VEROFDARKNESSANDCOVEREDBIV

89

F	
0	0

$\begin{array}{ll}0 & 0 \\ 0 & \mathrm{~N}\end{array}$

WITH THE IMPROVEMENTS IN THE AIRPLANE AND THE MEANS OF COMMUNICATION AND WITH HE VAST SIZE OF MODERN ARMIES STRATEGIC SURPRISE WILL BECOME HARDER AND HaRDER TO ATTAIN X IN THE PRESENCE OF MODERN AVIATION AND FAST MOVING MECHANIZED elements greater complexities more subtle deceptions strategems and feints ILL HAVE TO BE EMPLOYED X IN MODERN WARFARE IT IS SIILL POSSIble TO GAIN ACIICAL SURPRISE BY MANY MEANS X WHILE IHE MEANS OF OBSERV LNG AND TRANSMIITING INFORMATION OF TROOP MOVEMENTS ARE GREATLY IMPROVED OVER THOSE OF THE PAST THE mechanical means of moving troops are likewise far speedier x also false INFORMATION CAN BE FAR MORE EASILY AND QUICKLY DISTRIBUTED X THE LESSON TO BE LEARNED FROM THE OPENING PHASE OF ALLENBYS BATTLE OF MEGGIDO IS THAT SURPRISE IS POSSIBLE EVEN IN MODERN WARFARE BUT ONLY BY PERFECT DISCIPLINE ON THE PART OF THE TROOPS AND ALMOST SUPERHUMAN FORETHOUGHT AND ATTENTION TO DETAIL ON THE PART OF THE STAFF BACKED UP BY RESOLUTE ACTION IN THE AIR X TO MAINTAIN SECRECY MOVEENTS KUST BE UNDER COVER OF DARKNESS AND COVERED BIVOUAC AREAS MUST BE OCCUPIED

k The student should clearly understand the real nature of the matching process employed to such good advantage in this problem In practically all the previous cases frequency distrito such good advantage in this problem In practically all the prenious cases frequency distritions represented the actual occurrences of cipher letters Furthermore, when these distributions represented the actual occurrences of clpher letters Furthermore, when these distribuThat is, the text was arranged in a certann way, so that letters belonging to the same cıpher alphabet actually fell within the same column and the frequency distribution for a specific clpher alphabet was made by tabulating the letters in that column Then if any distributions were to be compared, usually the entrie distribution applicable to one cipher alphabet was compared with the ntire distribution applying to another cipher alphabet But in the problem just completed, what were compared in realty were not requency distributions applying to the columns of the apher text as transcribed on p 83, but graphic representations of the vanations in the frequencies of plain-text letters falling in vdentical sequences, the udentities of these plain-text letters being unknown for the moment Only after the reconstruction has been completed do their identities become known, when the plain text of the cryptogram is established

51 Alternative method of solution - a The foregoing method of solution is, of course almost entirely statistical in nature There is, however, another method of attack which should be brought to notice because in some cases the statistical method, involving the study of relatively large distributions, may not be feasible for lack of sufficient text Yet in these cases there may be sufficient data in the respective alphabets to permit of some assumptions of values of cipher letters, or there may be good grounds for applying the probable-word method The present paragraph will therefore deal with a method of solving progressive cipher systems which is based upon the application of the principles of indirect symmetry to certan phenomena arising is based upon the application of the principies of nedirect symmetry
from the mechanics of the progressive encipherment method itself
b Take the two sequences below and encipher the phrase FIRST BATTALION by the progressive method, slding the cipher component to the left one interval after each encipherment

Components
Plan \qquad HYDRAULICBEFGJKMNOPQSTVWXZ Cipher $-\mathrm{F}$ BPYRCQZIGSEHTDJUMKVALWNOX

Message

Certan letters are repeated in both plain text and cipher text Consider the former There are two I's, three T's, and two A's Therr encipherments are isolated below, for convemence in study

The two I's in line (1) are 10 letters apart, reference to the cipher component will show that the interval between the clpher equivalent of the first I_{p} (which happens to be I_{c}) and the second I_{b} (which is K_{0}) 1810 Consideration of the mechancs of the enciphering system soon shows why this is so: since the cupher component is dasplaced one step with each encipherment, two identical letters n intervals apart in the plain text must yield cipher equivalents which are n intervals apart in the cipher component Examination of the data in lines (3) and (4), (5) and (6) wll confirm this finding Consequently, it would appear that in such a system the successful applcation of the probable-word method of attack, coupled withn mdirect symmetry, can quickly lead to the reconstruction of the cupher component
d Now consider the repeated cipher letters in the example under b There happens to be only two cases of repetition, both involving Y's Thus

Reference to the plan component will show that the plan-text letters represented by the three Y's appear in the order N 0 I, that 13 , reversed with respect to their order in the plain text But the intervals between these letters is correct Again a consideration of the mechanics of the enciphering system shows why this is so since the cipher component is displaced one step with each encipherment, two identical letters n intervals apart in the cipher text must represen plam-text letters which are n intervals apart in the plan component In the present case the direction in which these letters run in the plan component is opposite to that in which the cipher component is displaced That is, if the clpher component is displaced toward the left the values obtained from a study of repeated plain-text letters give letters which concide in sequence (interval and direction) with the same letters in the cipher component, the values obtained from a study of repeated cipher-text letters give letters the order of which must be reversed in order to make these letters conncide in sequence (interval and direction) with the same letters in the plan component If the cipher component is displaced toward the nght, the relationship is merely revied the values obtang the cipher component those yelded letters by a study of the repeated cupher-text letters are unger in the plan compon order
e Of course, if the primary components are identical sequences the data from the two sources referred to in subparagraphs c and d need not be kept separate but can be combined and made to yield the primary component very quickly
f With the foregoing principles as background, and given the following message, which is assumed to begin with COMMANDING GENERAL FIRST ARMY (probable-word method of attack), the data yielded by this assumed text are shown in Figure 15

Message

```
IKMKI
FNIIG XGAMX CADUV AZVISS YNUNLetc, etc
```

 Cipher - IKMKILIDOLWLPNMVWPXWDUFFTF

92

Analysis of the data afforded by Figure 15, in conjunction with the principles of indirect symmetry, yeelds the following partial components

Settung the two partial components unto juxtaposition so that $C_{p}=I_{0}$ (first encipherment) the 8th value, $I_{p}=D_{d}$, gives the position of D in the cipher component and permits the eddition of X to 1 t, these being two letters which until now could not be placed into position in the clpher component With these two partial sequences it becomes posssble now to decipher many other

93
letters in the message, gaps being filled in from the context For example, the first few letters after ARMY decipher as follows
\qquad
 I L

I I GXGAMXCAD	
I L	EO

This leads to the insertion of the letter W in the plam The word after ARMY is probably WILL. This leads to the insertion of the letter W in the plain
component and G in the cupher component In a short tume both components can be completely ostablished
g In passing, it may be well to note that in the illustrative message in paragraph $50 a$ the very frequent occurrence of tripled letters (MMM, WWW, FFF, etc) indicates the presence of a frequently used short word, a frequently used ending, or the like, the letters of which are sequent in the plain component An aster of such tuplets cond then by aplong the pmaples of indirect symmetry, buld up the plain triplets by With that much as a start, solution of the enture message would be considerably sumphfied.
h The principles elucidated in this paragraph may, of course, also be applied to cases of ogressive systems in which the progression is by intervals greater than 1, and, with necessary progressive systems in which the progression is is not regular but follows a speaific pattern, such as $1-2-3,1-2-3$, , or $2-5-7-3-1,2-5-7-3-1$, and so The latter types of progression are encountered in certain mechanical cryptographs, the study of which will be reserved for future texts

Section XIV
THE "MONOALPHABETICITY" OR " Φ TEST"
Purpose of the Φ test
52)
52. Purpose of the Φ (phr) test - a The student has noted that the x test is based upon the general theory of comcidences and employs the probability constants κ_{ρ} and κ_{r} There is one more hest of a the succeding parn may
b In paragraph 48e it was stated that two monoalphabetic distributions when correctly combuned will yield a single distribution which should still be monoalphabetic in character This question arises, therefore, in the student's mind Is there a test whereby he can ascertan methematically whether a distribution is monoalphabetic or not, especially in the case of one which has relatively few data? Such a test has been derised and is termed the " Φ (phi) test" Which is monoalph of the Φ test.- a Consider a monographic or uniliteral frequence distribution in a system in which there are n possible elements, then there is a possible total of $\frac{N(N-1)}{2}$ pairs of letters (for comparison purposes)
b Let the symbol f_{A} represent the number of occurrences of A, f_{B} the number of occurrences of B, and so on to f_{Z} With regard to the letter A then, there are $\frac{f_{A}\left(f_{A}-1\right)}{2}$ concidences (Again the combinations of f_{A} things taken two at a time) With regard to the letter B, there are $\frac{f_{B}\left(f_{B}-1\right)}{2}$ comendences, and so on up to $\frac{f_{z}\left(f_{z}-1\right)}{2}$ comendences for the letter Z Now it has been seen that according to the κ test, in $\frac{N(N-1)}{2}$ comparisons of letters forming the two members of pairs of letters in normal Englsh plann text, there should be $\frac{\kappa_{p} N(N-1)}{2}$ comeidences, where κ_{p} is the probability of monographic comncidence for the language in question
c Now the expected value of $\frac{f_{A}\left(f_{A}-1\right)}{2}+\frac{f_{B}\left(f_{B}-1\right)}{2}+\quad+\frac{f_{z}\left(f_{z}-1\right)}{2}$ is equal to the theoretcal number of comeidences to be expected in $\frac{N(N-1)}{2}$ compansons of two letters, which for normal plain text is κ_{p} times $\frac{N(N-1)}{2}$ and for random text is κ_{r} tumes $\frac{N(N-1)}{2}$ That is, for plam text

Expected value of $\frac{f_{A}\left(f_{A}-1\right)}{2}+\frac{f_{B}\left(f_{B}-1\right)}{2}+\quad+\frac{f_{z}\left(f_{z}-1\right)}{2}=\kappa_{p} \times \frac{N(N-1)}{2}$, or
(IX) Expected value of $f_{A}\left(f_{A}-1\right)+f_{B}\left(f_{B}-1\right)+\quad+f_{Z}\left(f_{Z}-1\right)=\kappa_{p} N(N-1)$, and for random text

Expected value of $\frac{f_{A}\left(f_{A}-1\right)}{2}+\frac{f_{B}\left(f_{B}-1\right)}{2}+\quad+\frac{f_{Z}\left(f_{Z}-1\right)}{2}=\kappa_{F} \times \frac{N(N-1),}{2}$ or
(X) Expected value of $f_{A}\left(f_{A}-1\right)+f_{B}\left(f_{B}-1\right)+\quad+f_{z}\left(f_{z}-1\right)=\kappa_{T} N(N-1)$ If for the left-hand side of equations (IX) and (X) the symbol E ($(\mathbb{1}$) is used, then these equations become

$$
\begin{array}{lrl}
\text { (XI) } & \text { Fol plain text } & E\left(\Phi_{p}\right)=\kappa_{\nu} N(N-1) \\
\text { (XII) } & \text { For random text } & E\left(\Phi_{r}\right)=\kappa_{r} N(N-1),
\end{array}
$$

where $E(\Phi)$ means the average or expected value of the expression in the parenthesis, κ_{p} and κ_{r} are the probabilities of monographic comcidence in plain and in random text, respectively d Now in normal English plain text it has been found that $\kappa_{p}=0667$ For random text of a 26 -letter alphabet $\kappa_{r}=038$ Therefore, equations (XI) and (XII) may now be written thus
(XIII) For normal English plain text $\quad E\left(\Phi_{p}\right)=0667 N(N-1)$
(XIV) For random text (26-letter alphabet) $\quad E\left(\Phi_{r}\right)=0385 N(N-1)$
e By employing equations (XIII) and (XIV) it becomes possible, therefore, to test a prece of text for monoalphabeticity or for "randomness" That is, by using these equations one can mathematically test a very short cryptogram to ascertain whether it is a monoalphabetically equivalent to random tert involves several alphabets so Φ test equivalent to random text This test has been termed the Φ test
normal English plain text enciphered monoalphabetically?

$$
\text { ABCDEFGHIJKLMNOPPQRSTUVWXYZ } \underset{ミ}{ミ} \text { 코 }
$$

For this case the observed value of Φ is
$(1 \times 0)+(1 \times 0)+(2 \times 1)+(3 \times 2)+(4 \times 3)+(2 \times 1)+(1 \times 0)+(4 \times 3)+(2 \times 1)+(1 \times 0)+(1 \times 0)+$ $(3 \times 2)=2+6+12+2+12+2+6=40$
If this text were monoalphabetically enciphered English plain text the expected value of Φ is

$$
E\left(\Phi_{p}\right)=\kappa_{p} N(N-1)=0667 \times 25 \times 24=400
$$

If the text were random text, the expected value of Φ is

$$
E\left(\Phi_{r}\right)=\kappa_{r} N(N-1)=0385 \times 25 \times 24=231
$$

The conclusion is warranted, therefore, that the cryptogram is probably monoalphabetic substitution, since the observed value of $\Phi(40)$ more closely approximates the expected value for English plain text (400) than it does the expected value for random text (231) (As a matter of fact, the cryptogram was enciphered monoalphabetically)
b Here is another example Given the following series of letters, does it represent a selection of English text enciphered monoalphabetically or does it more nearly represent a random selection of letters?
YOUIJ ZMMZZ MRNQC XIYTW RGKLH

The distribution and calculation are as follows
ABCDEFGHISKLMNOPQRSTUVWXYY

$$
f(f-1) \ldots . \quad 0 \quad 0 \quad 0 \quad 2 \quad 0 \quad 0 \quad 0 \quad 6 \quad 0 \quad 0 \quad 0 \quad 2 \quad 0 \quad 0 \quad 0 \quad 0 \quad 2 \quad 6
$$

$\Sigma f(f-1)=18$ (That is, observed value of $\Phi=18$)
 $E\left(\Phi_{p}\right)=0667 \times 25 \times 24=400$ (That is, expected value of $\Phi_{p}=400$)

The conclusion is that the series of letters does not represent a selection of English text monoalphabetically enciphered Whether or not it represents a random selection of letters cannot be thald but may be said that if the letters actually do constitute a the message was enetically enciphered (As a matter ofence)
c The Φ test is, of course, closely related to the χ test and derives from the same general theory as the latter, which is that of concidence When two monoalphabetic distributions theory as the latter, which is that of conncidence
have been combined into a single distribution, the χ test may be applied to the latter as a check upon the test. It is also useful in testing the columns of a superimposition diagram, to ascertain whether or not the columns are monoalphabetic

Section XV

CONCLUDING REMARK

Cocluding remarks on aperiodic substitution systems
Paragrap Synoptic table.
65. Concluding remarks on aperiodic substitution systems. $-a$ The various system described in the foregong pages represent some of the more common and well-known methods of introducing complexities in the general scheme of cryptographic substitution with the view to avoiding or suppressing periodicity There are, of course, other methods for accomphshing this purpose, which, while perhaps a bit more complex from a practical point of new, yeld mor desirable results from a cryptographic point of new That is, these methods go deeper into the heart of the problem of cryptographic security and thus make the task of the enemy cryptanalyst much harder But studues based on these more advanced methods will have to b postponed at this time, and reserved for a later text
b Thus far in these studies, aside from a few remarks of a very general nature, no attention has been paid to that other large and important class of ciphers, viz, transposition It is desirable, before going further with substitution methods, that the student gain some understanding of how to solve certam of the more simple varieties of transposition ciphers Consequentey in the text to succeed methods and thoughts toward the methods of breaking down transposition cephers
56. Synoptic table.-Contaning the plan instituted in previous texts, of summarizing the textual material in the form of a very condensed chart called An Analytical Key for Military Cryptanalysis, the outhe for the studies covered by Part III is shown on p 119

APPENDIX 1

Additional Notes on Methods for Solving Plain-Text Auto-Keyed Ciphers

Introductory remarks

smple "mechanical" solution
Solution of plan-text auto-keyed cryptograms when the introductory key is a word or phrase-
Subsequent steps after determinng the length of the introductory key .-
Conversion of foregoing aperiodic cipher into periodic form.

1. Introductory remarks.-a In paragraph 33 of the text proper it was indicated that the method elucidated in paragraph 32 for solving plan-text auto-heyed ciphers is likely to be successful only if the cryptanalyst has been fortunate in his selection of a "probable word "Or, to put it another way, if the "probable words" which his imagination leads him to assume to be present in the text are really not present, then he is unfortunate, for solution will escape him But becauge most of to point out other principles and mothods whicli are not so subject to chance is true that auto-key systems are no are applicable only in special cases anactical mulitary cryptography, it was thought best to exclude the exposition of these principles and methods from the text proper and to add them in an appendax, for the study of such students as find them of particular interest
b A complete discussion of the solution of plam-text auto-key systems, with examples, would requre a volume in itself Only one or two methods will be described, therefore, leaving the development of additional principles and methods to the ingenuity of the student who wishes to go more deeply into the subject The discussion heren will be presented under separate headings, dependent upon the types of primary components employed
c As usual, the types of primary components may be classified as follows
(1) Primary components are identical
(a) Both components progress in the same durection
(b) Both components progress in opposite directions
(2) Primary components are different
2. Simple "mechanical" solution -a (1) Taking up the case wherenn the two identical primary components progress in the same direction, assume the following additional factors to be known by the cryptanalyst
(a) The primary components are both normal sequences
(b) The encipherment is by plain-text auto-keyng
(c) The enciphering equations are $\theta_{k / 2}=\theta_{1 / 1}, \theta_{D / 1}=\theta_{0 / 2}$, the only unknown factor is the initial key letter Of course, one could try to decipher the message using each key letter in turn, beginning with A and continung until the correct key letter is tried, whereupon plann text will be obtamed But it seems logical to think that all the 26 possible "decipherments" might be derived from the first one, so that the process maght be much simplified, and this is true, as

[^2]

\footnotetext{^[

]

[^4]

Abstract

 twill now be shown Takang the two cipher groups under consideration, let them be "deciphered" with intial key letter A

Clpher.
 \qquad QVGLBTPJTF

The deciphered text is certanly not "plam text" But if one completes the sequences intiated by these letters, using the drect standard sequence for the even columns, the reversed standard for the odd columns, the plain text sequence is seen to reappear on one generatrix It is HOSTILE FOR(CE) From this it appears that instead of going through the labor of making 26 successive trials, which would consume considerable time, all that is necessary is to have a set of strips bearing the normal drect sequence and another set bearng the reversed norm "" sequace, and to align the strips, alternately direct and reversed, to the first "decppherment" The plain text will now reappear on one generatrix of the completion dıagram (See Fig. 1)

$\begin{aligned} & \text { Initlalal } \\ & \text { key } \end{aligned}$	Q V G L BTPJTF
letter	QFBKRCNWXI
B	PGALQDMXWJ
C	OHZMPELYVK
D	NIYNOFKZUL
E	M JXONGJATM
F	L KWPMHIBSN
G	K LVQLIHCRO
H	JMURKJ GDQP
I	INTSJKFEPQ
J	HOSTILEFOR
K	GPRUHMDGNS
L	FQQVGNCHMT
M	ERPWFOBILU
N	DSOXEPAJKV
0	CTNYDQZKJW
P	B UMZCRYLIX
Q	AVLABSXMHY
R	ZWK B A TWNGZ
S	y XJCZUVOFA
T	XYIDYVUPEB
U	WZHEXWTQDC
v	VAGFWXSRCD
W	UBFGVYRSBE
X	TCEAUZQTAF
Y	SDDITAPUZG
Z	RECJS B OVYH

b The pecular nature of the phenomenon just observed, $v z$, a completion diagram with the vertical sequences in adjacent columns progressing in opposite directions, those in alternate columns in the same drection, calls for an explanation Although the matter seems rather mysterious, it will not be hard to understand First, it is not hard to see why the letters in column 1 of Figure 1 should form the descending sequence QPO for these letters are merely
the ones resulting from the successive "decipherment" of Q_{c} by the successive key letters A, B, C, Now since the "decipherment" obtained from the 1st cipher letter in any row in Figure 1 becomes the key letter for "deciphering" the 2 d clpher letter in the same row, it is apparent that as the letters in the 1st column progress in a reversed normal (descending) order the letters in the 2 d column must progress in a drect normal (ascending) order The matter may perhaps become more clear if enclpherment is regarded as a process of addition and decipherment as a process of subtraction. Instead of primary components or a Vigenère square, one may use simple arthmetic, assigning numerical values to the letters of the alphabet, begn$\theta_{k / 2}=\theta_{t / 2}, \theta_{\mathrm{D}}=\theta_{0} / 2$, the letter H_{0} enciphered by key letter M_{k} with direct primary components yields T_{0}. But using the following numerical values
the same result may be obtamed thus $H_{0}\left(M_{k}\right)=7+12=19=T_{\text {c }}$. Every time the number 25 is exceeded in the addition, one subtracts 26 from it and finds the letter equivalent for the remain der In decipherment, the process is one of subtraction ${ }^{1}$ For example $\mathrm{T}_{0}\left(\mathrm{M}_{\mathrm{z}}=19-12=7=\right.$ $H_{p}, D_{\mathrm{o}}\left(R_{\mathrm{k}}\right)=3-17=[(26+3)-17]=29-17=12=\mathrm{M}_{\mathrm{p}} \quad$ Using this arithmetical equvalent of normal slidng-strip encipherment, the phenomenon just noted can be set down in the form of a dagram (Fig 2) which will perhaps make the matter clear
${ }^{2}$ It will be noted that if the letters of the alphabet are numbered from 1 to 26 , in the usual manner, the arithmetical method must be modified in a minor particular in order to obtain the same results as are given by employing the normal Vigenere square This modification consists merely in subtracting 1 from the numerical employing the normal igenere
value of the key letter Thus

$$
\begin{aligned}
& \begin{array}{l}
H_{p}\left(M_{k}\right)=8+(13-1)=8+12=20=\mathrm{T}_{0} \\
T_{0}\left(M_{k}\right)=20-(13-1)=20-12=8=\mathrm{H}_{\mathrm{p}}
\end{array}
\end{aligned}
$$

For an mnteresting extension of the basic idea involved in arithmetic cryptography, see Hill, Lester S Cryptography in an Algebravc Alphabet American Mathematical Monthy, Vol XXXVI, No 6,1929
Ibd Concernnng certann linear transformation apparatus of cryptography American Mathematical Monthly
Vol XXXVIII, No 3, 1931

* * * * * * * * * * * * * * * * * * * * * *

$Q_{0}\left(B_{\mathrm{r}}\right)=16-1=15=$
$V_{0}\left(P_{x}\right)=21-15=$
$\mathrm{G}_{0}\left(\mathrm{G}_{\mathrm{k}}\right)=6-6=0=\mathrm{A}$
$L_{0}\left(A_{x}\right)=11-0=11=L$
$B_{0}\left(L_{k}\right)=1-11=16=Q$

Note how homologous letters of the three rows (jomed by vertical dotted lenes) form alternately escending and ascending normal sequences
c When the method of encipherment based upon enciphering equations $\theta_{2 / 2}=\theta_{1 / 1}, \theta_{p / 2}=\theta_{0 n}$ is used instead of the one based upon enciphering equations $\theta_{k / 2}=\theta_{1 / \Lambda}, \theta_{p h}=\theta_{0 / 2}$, the process indicated above is simplified by the fact that no alternation in the direction of the sequences in the completion dagram is required For example

Cipher-------------------- Y H E B P D T B J D

AHLMBEXYH
IMNCFYZIL JNODGZAJ DKOPEHABK ELPQFIBCLO
FMQRGJCDMP FMQRGJCDMP GNRSHKDENQ
HOSTILEFOR fagar 3
d (1) In the foregoing example the primary components were normal sequences, but the case of identical muxed components may be handled in a simular manner Note the following example, based upon the following primary component (which is assumed to have been reconstructed from previous work)

$$
\begin{gathered}
\text { FBPYRCQZIGSEHTDJUMKVALWNOX } \\
\text { Message---------- USINL YQEOP... etc }
\end{gathered}
$$

(2) First, the message is "deciphered" with the intial key-letter a, and then a completion dagram is established, using slding strips bearng the mixed primary component, alternate strips bearnn", the reversed sequence Note Figure 4, in which the plan text, HOSTILE FOR (CE), reappears on a single generatrix Note also that whereas in Figure 1 the odd column contain the pu mary sequence in the reversed order, and the even columns contain the sequence in the direct order, in Figure 4 the situation is reversed the odd columns contain the primary sequence in the drrect order, and the even columns contan he sequen in fors is This pont broght to notico the ther in the for odd columns type of solution
(1) There $1 s$ next to be consideled the case in which the two prinary components progiess un opposite ducctions [par 1c (1) (b)] Here is a message, known to have been enciphered by reversed standard alphabets, plain-text auto-keymg having been followed
X TWZLXHZRX
(2) The procedure in thus case is exactly the same as before, except that it is not necessany to have any alternation in direction of the completion sequences, which may be either that of the plann component or the cipher component Note the solution im Figure 5 Let the student ascertan why the alternation in direction of the completion sequences is not necessary in this case
(3) In the foregoing case the alphabets were reversed standard, produced by the sliding of the normal sequence against its reverse But the underlyng principle of solution is the sam even if a mixed sequence were used instead of the normal, so long as the sequence is known, th procedure to be followed is exactly the same as demonstrated in subparagraphs (1) and (2) hereof Note the following solution

Message

VDDNCTSEPA
Plaın componentFBPYRCQZIGSEHTDJUMKVALWNOX Cupher component XONWLAVKMUJDTHESGIZQCRYPB

Note here that the primary muxed sequence is used for the completion sequence and that the plain text, HOSTILE FOR(CE), comes out on one generatrix It is immaterial whether the direct or reversed mixed component is used for the completion sequence, so long as all the sequences in the diagram progress in the same direction (See Fig 6)
f (1) There remains now to be considered only the case in which the two components are different muxed sequences Let the two primary components be as follow

Plan. \qquad (FGHIJKLMNOPQRSTUVWXYZ
Cipher. FBPYRCQZIGSEHTDJUMKVALWNOX
and the message

$$
\text { CFUYL } \quad V X U D J
$$

 fiovar

XTWZLXHZRX CJNODGZAJM DKOPEHABK MPQFIBCL MQRGJCDMP GNRSHKDENQ PTUJMFGPS QUVKNGHQT KRVWLOHIRU LSWXMPIJSV MTXYNQJKTW NUYZORKLUX VZAPSLMVY PWABTMNWZ Q X BCRUNOXA RYCDSVOPYB SZDETWPQZC IAEFVYQRAD VCGHWZSTBE DHTyATUD DEIXAYUDG XEIJYBUVEH YFGKLACVWFI GGKLADWXGJ
AHLMBEXYHK AHLMBEXYHK

VDDNCTSEPA ZVCIYUQLVX IAQGRMZWAF GLZSCKINLB SWIEQVGOWP HOSTILEFOR TXEDGWHBXC DFHJSNTPFQ JBTUEODYBZ UPDMHXJRPI MYJKTFUCYG KRUVDBMQRS VCMAJPKZCE AQKLUYVIQH LZVWMRAGZT WIANKCLSID NGLOVQWEGJ OSNXAZNHSU XENFLOMEM FTXPNSFJTK PDFYOEBUDA YJBRXHPMJA RUPCFTYKUW CMYQBDRVMN QKRZPJCAKO ZVCIYUQLVX Figure 6
(2) Frrst "decipher" the message with any arbitrarly selected mintial key letter, say A, and complete the plan component sequence in the first column (Fig 7a)

Chpher------ C F U L V X D J	CFUYLVXUDJ	CFUYLVXUDJ
Plan.------- L Q X W X A W S F	LFQXWXAWSE	LFQXWXAWSE
M	M J	M J B C
N	$N \mathrm{D}$	N D C Y
0	0 C	0 CLI
P	P Y	PYNG
Q	Q U	Q U A J
R	R W	R W U N
S	S Q	S Q K L
T	T N	T NTQ
U	U K	UKY A
V	V H	VHES
W	W E	WEFD
x	X B	X $\mathrm{BPB}^{\text {P }}$
Y	Y X	Y X R Z
Z	2 T	Z T D P
A	A G	AEHR
B	B Z	B ZJ 0
C	C V	CVXE
D	D M	D M Z W
E	E P	EPOF
F	F A	FAW H
G	G R	G R M M
H	H 0	* H 0 S T
I	I S	I S G
J	J L	J L V
K	K I	K I I
maers 7 a	Figuri 76	frouns 76

Now prepare a strip bearng the cipher component reversed, and set it below the plan component so that $F_{p}=L_{c}$, a setting given by the 1st two letters of the spurious "plain text" recovered Thus
\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher--. FXONWLAVKMUJDTHESGIZQCRYPB
(3) Now opposite each letter of the completion sequence in column 1, write its plamcomponent equivalent, as given by the juxtaposed sequences above This gives what is shown in Figure $7 b$ Then reset the two sequences (reversed cipher component and the plain component) so that $Q_{\mathrm{p}}=\mathrm{F}_{\mathrm{o}}$ (to correspond with the 2 d and 3d letters of the spurious plain text), write down the plain-component equivalents of the letters in column 2, forming column 3 Continue this process, scanning the generatrices from time to time, resetting the two components and finding equivalents from column to column, until it becomes evident on what generatix
the plain text is reappearing In Figure $7 c$ it is seen that the plain text generatrix is the one the plann text is reappearing In Figure $c c$ it is seen than plam dest gana beginning HOST, and from this point on the solution may be obtained directly, by using the two primary components
(4) When the plain component is also a mixed sequence (and dufferent from the cipher component), the procedure is identical with that outlined in subparagraphs (1)-(3) above. The fact that the plan component in the preceding case is the normal sequence is of no particula To dementrate, suppose the two followng components were used in encupherment of the To demonstrate, suppose the two following components were used in encipherment of the message below

Message_---.-... B B V Z U DQXJD

To solve the message, "decipher" the text with any arbitrarnly selected mitial key letter and proceed exactly as in subparagraphs (2) and (3) above Thus

$$
\begin{aligned}
& \text { Cpher------------- V B V V Z U D Q X J } \\
& \text { "Plann" }\left(\theta_{\mathbf{k}}=\mathrm{X}\right)
\end{aligned}
$$

Note the completion duagram in Figure 8 which shows the word HOST very soon in the process From this point on the solution may be obtaned drectly, by using the two primary components
3. Another "mechanical" solution $-a$ Another "mechanical" solution for the foregoing ases will now be described because it presents rather interesting cryptanalytac sidelghts Take the message

REFERENCEHIS PREFERENCEIN REFERENCE BOOKS AND REFERENCECHARTS
and encıpher it by plan-text auto-key, with normal duect primary components, mitial key setting $A_{D}=G_{c}$ Then note the underscored repetitions

> REFERENCEHISPREFERENCEINREFE XVJJVVRPGLPAHGVJJVVRPGMVEVJJ RENCEBOOKSANDREFERENCECHARTS VVRPGFPCYCSNQUVJJVVRPGGJHYK
b Now suppose the message has been intercepted and is to be solved The only unknown factor will be assumed to be the intial key letter Let the message be "deciphered" by means of any mithal key leiter, ${ }^{2}$ say A, and theu note the underscored repetitions in the spurious plan text

The onginal four 8 -letter repetitions now turn out to be two different sets of 9 -letter repetitions This calls for an explanation Let the spurious plan text, with its real plan text be transcribed as though one were dealing with a feriodic cipher nvolving two alphabets, as shown in Figure 9 It will here be seen that the letters in column 1 are monoalphabetic, and so are those in column 2 In other words, an auto-key clpher, which is commonly regarded as a polyalphabetic, aperiodic clpher, has been converted into a 2 -alphabet, periodic cipher, the mdividual alphabets of which are now monoalphabetic in nature The two repetitions of X Y L Y X Y T W K represent encipherments of the word REFERENE, IL alphabets 1-2-1-2-1-2-1-2-1, the two

a
a Later on into a periode copher may be oppled to an case where on untroductory key word is used is the nitial keyng case where an introductory key word is used as the initial keying

1-2	1-2	1-2	1
RE	E F	R E	E
X Y	K Z	X Y	
F E	ER	N C	
L Y	K L	T W	
R E	E N	E B	
X Y	K H	K V	
N C	C E	00	
T W	I Y	U I	
E H	I N	K S	
K B	0 H	Q M	
I S	R E	A N	
0 M	X Y	G H	
P R	F E	D R	
V L	L Y	J L	

${ }^{2}$ Except the actual key letter or a letter 13 intervals from it See subparagraph (7) belo
d The student has probably already noted that the phenomena observed in this subparagraph are the same as those observed in subparagraph $2 b$ In the latter subparagraph it was seen out the plan text on one seneratus If thate lon o two monoalphabets
e When reciproc
, with a ment" with a key setting other than the actual one will be monoalphabetic throughout Note the following encipherment (with intial key ;etting $A_{p}=G_{c}$, using a reversed standard sequence slidung aganst the direct standard) and its "decipherment" by setting these two components $A_{p}=A_{\text {。 }}$

Plan text
Cipher.
Cipher .-......------
Spurious plan text REFERENCEHISPREFERENCE
LYZYLYHWYBCMJLYZYLYHWY
f The reason for the exception noted in footnote 2 on page 106 now becomes clear For if the actual mitial key letter (\mathbf{G}) were used, of course the deciphernent yelds the correct plan text, if a letter 13 intervals removed from G is used as the key letter, the cipher alphabet selected for the first "decipherment" is the reciprocal of the real mitial cipher alphabet and thereafter all alternate cipher alphabets are reciprocal Hence the spurious text obtaned from such a decipherment" must be monoalphabetic
g In the foregong case the primary components were identical normal sequences progressing in the same direction If they were muxed sequences the phenomena observed above would still hold true, and so long as the sequences are known, the macated method of solution may be apphed
h When the two primary components are known but differently mixed sequences, this method of solution is too involved to be practical It is more practicable to try successive mitial key letters, noting the plan text each time and resetting the strips untal the correct setting has been ascertained, as will be evidenced by obtaining intelligible plain text

4 Solution of plain-text auto-keyed cryptograms when the introductory key is a word or phrase - a lo to the right with respect to the text of the message itsolf But sometmes a word or phrase may serve this function, in which case the subuequent key is displaced as many letters to the right of the initial plain-text letter of the message as there are letters in the mitial key This will not, as a rule, interfere in any way with the apphcation of the principles of solution set will not, as a rule, interfere in any way with the apphcation of the principles of solution set
forth in paragraph 28 to that part of the cryptogram subsequent to the introductory key, and forth in paragraph 28 to that part of the cryptogram subsequent to the introductory key, and
a solution by the probable-word method and the study of iepetitions can be reached However, it may happen that trial of this method is not successful in certann cryptograms because of the paucity of repetitions, or because of falure to find a probable word in the text When the cipher alphabets are known there is another point of attack which is useful and menteresting The method conssists in finding the length of the introductory key and then solving by frequency principles Just how this is accomplished will now be explamed
b Suppose that the introductory key word is HORSECHESTNUT, that the plan-text message is as below, and that identical primary components progressing in the same direction are used

Key_-
Plain YLEFTFLANKTSRELEFTHANK
Cipher
Key. TMCWJVMPSGXCLDCNINONYGUOI RECEIVINGHEAVYARTILLERYFIR YARTILLERYFIREENEMYISMASSI PETXGTRXFJIMCEEXUJTWMYXAZ EENEMYISMASSINGTROOPSTOLEF GTROOPSTOLEFTFRONTANDCON KGVAMXKFODWNGLKFBHPFWQZRH TFRONTANDCONCENTRATINGARTI ENTRATINGARTILLERYTHEREXWI LLERYTHEREXWILLNEEDCONSIDE LLNEEDCONSIDERABLEREINFORC WWRVCWJSEWFZMCLOPIUGWAXORC
\qquad RABLEREINFORCEMENTSTOMAINT EMENTSTOMAINTAINMYPOSITION
VMFYXJXWZFWEVEURZRHHGUTQBG
It will now be noted that since the introductory key contans 13 letters the 14th letter of the message is enciphered by the 1st letter of the plan text, the 15th by the 2d, and so on Lukewise he 27 th letter is enciphered by the 14th, the 28th by the 15th, and so on Hence, if the 1s the key for the 27th, and so on An umportant step in the solution of a mesere of the ould therefore involve ascertaning the length of the introductory key. This of till be explained
c Since the plain text itself constitutes the key letters in this system (after the introductory key), these key letters will occur with their normal frequencies, and this means that there will be many occurrences of E, T, O, A, N, I, R, S, enciphered by E_{k}, there wll be many occurrence of these same high-frequency letters enciphered by T_{k}, by 0_{k}, by A_{k}, and so on In fact, the number of times each of these combinations will occur may be calculated statistically With the enciphering conditions set forth under b above, E_{p} enciphered by T_{k}, for example, will yield the same cupher equivalent as T_{p} enciphered by E_{k}, in other words two encipherments of any pair of letters of which either may serve as the key for enciphering the other must yeld the same ipher resultant it is the cryptographic effect of these two phenomena working togethe which permits of ascertaining the length of the introductory key in such a case For ever time a given letter, θ_{p}, occurs in the plan text it will occur n letters later as a key letter, $\theta_{\mathbf{k}}$, and n in this case equals the length of the introductory key Note the following illustration
direction If this is not the case, the entire reasoning is mapplicable

Here it will be noted that E_{p} in line (2) has a T_{p} on either side of it, at a distance of 13 intervals the first encipherment (E_{p} by T_{k}) yrelds the same equivalent (X_{0}) as the second encipherment (T_{p} by E_{k}) Two cipher letters are here identical, at an interval equal to the length of the intro ductory key but the converse is not true, that is, not every parr of identical lettersin the cipher the result of the followng three conditon each hanig a statistilly ascertable pibll of occurrence

> occurrence (1) A
(1) A given plan-text letter is enciphered by the same key letter two dufferent times, at a interval which is purely accidental, the cipher equivalents are identical but could not be used to give any information about the length of the introductory key
(2) Two different plan-text letters are enciphered by two different key letters, the cipher equivalents are fortuitously identical
(3) A given plain-text letter is enciphered by a given key letter and later on the same plaintext letter serves to encipher another plan-text letter which is identical with the first key letter, the cipher equivalents are causally identical

It can be proved that the probability for identities of the thard type is greater than that for identities of either or both 1st and 2d types for that interval which corresponds with the length of the introductory key, that is, if a tabuation is made of the intervals between identical letters in such a system as the one beng studied, the interval which occurs most frequently should comcide wrth the length of the introductory key The demonstration of the mathematical basis for this fact is beyond the scope of the present text, but a practical demonstration will be convincing d Let the illustrative message be transcribed in lines of say 11, 12, and 13 letters, as in Figure 10
 CLDCNINONYG LDCNINONYGUODCNINONYGUOIN UOINPETXQGT INPETXQGTRXFPETXQGTRXFJIM RXFJIMCEEXUJIMCEEXUJTWDCEEXUJTWDYXAZ JTWDYXAZRKG YXAZRKGVAMXK RKGVAMXKFODWN VAMXKFODWNG FODWNGLKFBHP GLKEBHPFWQZRH LKFBHPFWQZR FWQZRHXSKFNM XSK HXSKFNMIAJC I AJCFGKPYXIY PYXIYMPRXEOPQ
FGKPYXIYMPR MPRXEOPQWWRV WWRVCWHSEWFZM FGKPYXIYMPR MPRXEOPQWWRV WWRVCWJSEWFZ JSEWFZMCLOP PIUGWAXWUGVM VMFYXJXWZFWEV IUGWAXWUGVMFYXJXWZFWEVE EURZRHHGUTQBG FYXJXWZFWEV URZRHHGUTQBG EURZRHHGUTQ B G

135922-39-8

In each transcription, every par of supermposed letters is noted and the number of identities is indicated by ringing the letters involved, as shown above The number of identities for on assumed introductory-key length 13 is 9 , as against 3 for the assumption of a key of 11 letters, and 5 for the assumption of a key of 12 letters
e Once having found the length of the introductory key, two lines of attack are possible he composition of the hey may be studied, which will yeld sufficient plan text to get a stat toward solution, or, the message may be rodured to periodic terms and solved as a repeating-key cupher The first line of attack will be discussed frist, it being constantly borne in mind in this paragraph that the entire discussion is based upon the assumption that the cipher alphatets are known alphabets The illustrative message of b above will be used

5 Subsequent steps after determining the length of the introductory key -a Assume that the first letter of the introductory key is A and decipher the 1st cipher letter T_{c} (with direct standard alphabets) This yrelds T_{p} and the latter decomes the hey letter for the 14th letter of the message The 14th letter 15 decipheied $D_{e}\left(T_{k}\right)=K_{p}$, the latter becomes the key letter for 13 letters The The mas it The message as it appears for the fast three trials (assuming A, B, then C as the initial key letter) is shown in Figure 11

b Inspection of the results of these three trials soon shows that the entire series of 26 truals need not be made, for the results can be obtained from the very first trial This may be shown graphically by supermposing merely the results of the first three trials horizontally

Cipher letters of Col 1, Fig 11 .

Keyletters

TDPCRGXPWCVE TKFXUMLESKLT SLEYTNKFRLKU 11111111111
c It will be noted that the vertical sequences in adjacent columns proceed in opposite directions, whereas those in alternate columns proceed in the same direction The explanation

TDPCRGXPWCVE TKFXUMLESKLT SLEYTNKFRLKU RMDZSOJGQMJV QNCARPIHPNIW POBBQQHIOOHX OPACPKGJNPGY NQZDOSFKMQFZ

 LSXFMUDMKSDB KTWGLVCNJTCC IVVKWBOIUBD HWTJTYAPAEE GXSKHZYQGWZF FYRLGAYSEYXH EZQMFBWTDZWI DAPNECVUCAVJ CBOODDUVBBUK | B C N P C ETWACTK |
| :--- | BCNPCETWACTL

ADMQBFSXZDSM ADMQBFSXZDSM
ZELRAGRYYERN YFKSZHQZXFQO XGJTYIPAWGPP WHIUXJOBVHOQ VIHVWKNCUINR
UJGWVLMDTJMS Flavas is
e Identical procedure is followed with respect to columns 2, 3, 4, the result that the initial key word HORSECHESTNUT is reconstructed and the whole messag may be now deciphered quite readily

6 Conversion of foregoing aperiodic cupher into periodic form -a In paragraph 4 it was stated that an aperiodic cupher of the foregoing type may be reduced to periodic terms and solved as though it were a repeating-key cipher, provided the primary components are known sequences The basis of the method lies in the phenomena noted in paragraph $2 b$ An example will be given
b Let the cıpher text of the message of paragraph $4 b$ be set down again, as in Figure $10 c$

		3	4	5	-				10		12	
T	M	C	W	J	V	M	P	S	G	X	C	L
D	C	N	I	N	0	N	Y	G	U	0		N
P	E	T	X	Q	G	T	R	x	F	J		
C	E	E	x	-	J	T	W	D	Y	x	A	
R	K	G	V	A	M	X	K	F	0	D	W	N
G	L	K	F	B	H	P	F	W	Q	Z	R	
X	S	K	F	N	M	I	A	J	C	F	G	K
	Y	X	I	Y	M	P	R	x	E	0		Q
W	W	R	V	C	W	J	S	E	W	F	Z	M
C	L	0	P	I	U	G	W	A	X	W		G
V	M	F	Y	X	J	X	W	z	F	W	E	V
	U	R	Z				G	U		Q		

Using direct standard alphabets (Vigenère method), "decipher" the second line by means of the first line, that is, taking the letters of the second line as clpher text, those of the first line as key letters Then use the thus-found "plan text" as "key letters" and "decipher" the third line of Figure 10c, as shown in Figure 14 Thus
"Plain" DCCWJVMPSGXCL
"Key" \qquad KQLMETZJOORGC
"Planer," \qquad KQLMETZJOORGC PETXQGTRXFJIM
FOILMNUIJRSCK Flaore 14

Continue this operation for all the remaning lines of Figure $10 c$ and write down the results in lines of 26 letters Thus

$$
\begin{aligned}
& \text { FOILMMUTSRSCKXXWWMEWZOUHFYP }
\end{aligned}
$$

> LAVFXUCSETVGMTUWUUNFOQAVUU
> Flaver is

Now write down the real plain text of the message in lines of 26 letters Thus
 MYLETYTFLANKISRECEIVINGHEAV NGTROOPSTOLEFTERONTANDCONC ENTRATINGARTILLERYTHEREXWI

fieuri 16
c When the underlined repetitions in Figures 15 and 16 are compared, they are found to be identical in the respective columns, and if the columns of Figure 15 are tested, they will be found to be monoalphabetic The cipher message now gives every indication of being a repeating-key cipher It is not difficult to explain this phenomenon in the hight of the demonstration given in paragraph $3 g$ First, let the key word HORSECHESTNUT be enciphered by the followng alphabet

> ABCDEGGIJKLMNOPQRSUVWXY

AZYXWVUTSRQPONMLKJIHGFEDCB
"Plam" \qquad HORSECHESTNUT

Then let the message MY LEFT FLANK, etc, be enciphered by dırect standard alphabets as before, but for the key add the monoalphabetic equivalents of HORSECHESTNUT TMJIW to before, but for the key add the monoalphabetic equivalents of HORSECHESTNUT TMJIW to
the key itself, that is, use the 26 -letter key HORSECHESTNUTTMJIWYTWIHNGH in a repeating-key manner Thus (Fig 17)

The cipher resultants of this process of encuphering a message coincide exactly with those obtaned from the "deciphering" operation that gave rise to Figure 15 How does this happen"
d First, let it be noted that the sequence TMJI , which forms the second half of the key for enciphering the text in Figure 17 may be described as the standard alphabet complement key for encipherng the text in Figure 17 may be described as the standard alphabet complement of the sequence HORSECHESTNUT, which forms the first half of that key Arthmetic
sum of a letter of the first half and its homologous letter in the second half is 26 Thus

$$
\begin{aligned}
& \mathrm{H}+\mathrm{T}=7+19=26=0 \\
& 0+\mathrm{M}=14+12=26=0 \\
& \mathrm{R}+\mathrm{J}=17+9=26=0 \\
& \mathrm{~S}+\mathrm{I}=18+8=26=0 \\
& \mathrm{E}+\mathrm{W}=4+22=26=0
\end{aligned}
$$

That is, every letter of HORSECHESTNUT plus its homologous letter of the sequence TMJIWYTYIHNGH equals 26, which is here the same as zero In other words, the sequence TMJIWYTWIHNGH is, by cryptogiaphic anthmetic, equvalent to "minus HORSECHESTNUT" Therefore in Figure 17, enciphering the second half of each line by the key letter TMJIWYTWIHNGH (i e, adding 19, 12, 9, 8,) is the same as deciphering by the key letters HORSECHESTNUT (e, subtracting 7, 14, 17, 18,) For example

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{k}}\right)=17+19=36=10=\mathrm{K}, \text { and } \\
& \mathrm{R}_{\mathrm{p}}\left(-\mathrm{H}_{\mathrm{k}}\right)=17-7=10=\mathrm{K} \\
& \mathrm{E}_{\mathfrak{p}}\left(M_{\mathrm{L}}\right)=4+12=16=Q_{\mathrm{e}} \text {, and } \\
& \mathrm{E}_{\mathrm{p}}\left(-\mathrm{O}_{\mathrm{k}}\right)=4-14=(26+4)-14=16=Q_{c}, \text { and so on }
\end{aligned}
$$

e Refer now to Figure 15 The letters in the first half of line 1, beginning TMCWJ are identical with those in the first half of line 1 of Figure 17 They must be identical because they are produced from identical elements The letters in the second half of this same line in Figure 15, beginning KQLME were produced by deciphering the letters in the second line of Figure 10c Thus (taking for illustrative purposes only the first five letters in each case)
$K Q L M E=D C N I N-T M C W J$
$D C N I N=R E C E I+M Y L E F$

Hence, $K Q L M E=(R E C E I+M Y L E F)-(M Y L E F+H O R S E)$
Hence, KQLME=(RECEI+MYLEF)-(M)
Or, $K Q L M E=R E C E I-H O R S E$
As for the letters in the second half of line 1 of Figure 17, also beginning KQLME
, these etters were the result of enciphering RECEI by TMJIW Thus

$$
\text { KQLME =RECEI }+T M J I W
$$

But it has been shown in subparagraph d above that

$$
\text { TMJIW }=- \text { HORSE }
$$

$$
\begin{array}{ll}
\text { Hence, } & K Q L M E=R E C E I+(-H O R S E) \\
\text { Or, } & K Q L M E=R E C E I-H O R S E
\end{array}
$$

Thus,

 f What has been demonstrated in connection with the letters in hne 1 of Figures 15 and 17 holds true for the letters in the other lnes of these two figures, and it is not necessary to repeat the explanation The steps show that the orignally aperiodic, auto-key cipher has beenconverted, through a knowledge of the primary components, into a repeatung-key cipher with a period twice the length of the introductory key The message may now be solved as an ordinary repeating-key clpher
g (1) The foregoing case is based upon encipherment by the enciphering equations $\theta_{k / 2}=\theta_{1 / 1}, \theta_{\mathrm{p} / 2}=\theta_{0}$. When encipherment by the enciphering equations $\theta_{\mathrm{K} / 2}=\theta_{1 / 1}, \theta_{\mathrm{D} / 2}=\theta_{c}$ has been followed, the conversion of a plain-text auto-keyed cipher yields a repeating-key cipher with a period equal to the length of the introductory key In this conversion, the enciphering equations $\theta_{k / 2}=\theta_{1 / /}, \theta_{p / 1}=\theta_{\mathrm{o} / 2}$ are used in finding equivalents
(2) An example may be useful Note the enclpherment of the following message by auto-key method by encuphering equations $\theta_{\mathrm{z} / 2}=\theta_{1 / 1}, \theta_{\mathrm{p} / 2}=\theta_{\mathrm{c} / 1}$
TUESDAYIINFORMATIONFROMRELIABLESOURCESINDIC INFORMATIONFROMRELIABLESOURCESINDICATESTHE PTBWOMCLVJZOFOTJQYDJNZNODMRBTOQZJRAWBWFQZC
(3) If the message is written out in lines coriesponding to the length of the introductory key, and each line is enciphered by the one drectly above $1 t$, using the enciphering equations $\theta_{k / 2}=\theta_{1 / 1}, \theta_{D / 1}=\theta_{\mathrm{c} / 2}$ in finding equivalents, the results are as shown in Figure $22 b$ But if the same message is encuphered by equations $\theta_{\mathbf{x} / 2}=\theta_{1 / 2}, \theta_{\mathrm{p} / 2}=\theta_{\mathrm{c} / 1}$, using the word TUESDAY as a repeating key, the clpher text (Fig 18c) is identical with that obtamed in Figure $18 b$ by enciphering each successive line with the line above it

Orignal eipher text	Original cupher text and converted text	Repastung key encepher ment
		TUESDAY
PTBWOMC		INFORMA
LVJ Z OFO	PV J Z OFO	W OMC
		TIONFR
	A OKVCRQ	AOKVCRQ
T J Q P J N	TJQYDJN	
		M RELIAB
	TXATFAD	TXATFAD
Z N O D M B	Z NODMRB	
		L ESOURC
T O Q J R A		SKOWRRE
		ESINDIC
	LYEVAIE	LYEVAIE
WBWFQ Z C	W BWFQ F C	
		ATESTHE
a	$\mathrm{HZAA} \underset{b}{\mathrm{~A}} \mathrm{HG}$	
	Figuri 18	

(4) Now note that the sequences joined by arrows in Figure 186 and c are identical and sunce it is certain that Figure 18c is periodic in form because it was enciphered by the repeating-key method, it follows that Figure $18 b$ is now also in periodic
h (1) In case of primary components consisting of a direct normal sequence slding against a reversed normal (U S Army disk), the process of converting the auto-key text to periodic terms is accomplished by using two direct normal sequences and "deciphering" each line of the text (as transcribed in periods) by the line above it For example, here is a message autoenciphered by the aforementioned disk, with the initial key word TUESDAY
TUESDAYINFORMATIONFROMRELIABLESOURCESINDIC INFORMATIONFROMRELIABLESOURCESINDICATESTHE LHZEMOYPFRBMVMHRKCXRNBNMXOJZHMKBRJAEZEVKBY
(2) The cupher text is tianscribed in periods equal to the length of the mitial key word (7 letters) and the 2 d line is "deciphered" with key letters of the 1st line, using encipherng equations $\theta_{r / n}=\theta_{1 /}, \theta_{p / 2}=\theta_{i / 2}$ The resultant letters are then used as key letters to "decipher" equations $\theta_{z / n}=\theta_{1 / 2}, \theta_{p / h}=\theta_{c / 2}$ The resultant letters are then used as key letters to "decipher"
the 3d line of text and so on \quad The results are as seen in Figure 19b Now let the ongnal message be encophered in repeating-key manner by the disk, with the key word TUESDAY, and the result is Figure 19c Note that the odd or alternate lines of Figure $19 b$ and c are identical, showing that the auto-key text has been converted into repeating-key text

Original eiphar toat	Orginal cipher text and converted text	Repeating key enclpher ment
		TUESDAY
		INFORMA
LHEEMOY	L HZEMOY	LHZEMOY
PFRBMVM	PFRBMVM	TIONFRO
	AMQFYJK	AMQFYJK
HRKCXRN	HRKCXRN	MRELIAB
	HDAHVAX	HDAHVAX
B NMXOJZ	BNMXOJZ	LESOURC
	IQMEJJW	I Q MEJ J W
HMKBRJA	HMKBRJA	ESINDIC
	PCWFASW	PCWFASW
E Z EVKBY	EZEVKBY	ATESTHE
	tbatktu	TBAAKTU

2 The foregoing procedures indicate a sumple method of solving caphers of the foregong types, when the primary components or the secondary cipher alphabets are known It consists in assuming introductory keys of various lengths, converting the cipher text intere then examining the resulting diagrams for repetitions When a correct key length is form, and then examining the resuiting diagrams for repeniteted in crphers of the repeating-key class, incorrect assumptions for key length will not show so many repetitions
${ }^{3}$ All the foregoing presupposes a knowledge of the cupher alphabets involved When these are unknown, recourse must be had to first principles and the messages must be solved purely upon the basis of probable words, and repetitions, as outlined in paragraphs 27-28

INDEX

Aperiodic systems	Formulae, domorphe
thmetical	Formulae, 1 diomorphic.--
	Frequency distribution square
Auto-key encipherment, two basic methods of -	General solution for cıphers mvolving a long
Auto-key systems	
Solution of-----------------------------28, 28	Groupngs
Characternstics of ----------------------31	Constant-length plain-text-.--------.---- 2, 19
Concludng remarks o	
Auto keying Cipher text \qquad 28, 30	Varrable-length, plann-text---------------------- 5
Avoiding periodictry, methods of	Identity or conneidence
	Inomorphism
Base letter---------------------------..---3, 32, 36	
Basic period masked by aperiodic repetitions--- 16	
Blockng out 1somorphs----------------------14	Intral key------------------------------28, 28
	Interlockng messages by repetitions---------- 56
	Intermittent coincidences.
	Interrupting a cyclic keying sequence
	Interrupting the key, three baste metho
	Interruptions, keyng--
	Interruptor-
Example of apphication of----------------79	Cipher-text letter aq
In matching shifted distributions----------77	Plan-text letter as
	Disadvantages of ---------------------- 27
	Consisting of more than one letter--.- 32, 45, 107
Bassc theory of---------------------------- 58	Irregular interruptions in keying sequence-.--- 19
Conomdence, intermittent----------------------18	Isomorphic sequences.
Combining individual frequency distributions_- 74	Isomorphism
Comparisons for comerdence -.-.-...---..---- 60	Detection of
Constant-length, plan-text groupings-...---.-.- 2, 19	Illustration of the use of.--------------11, 119
	Phenomena of-----------------------1111-11-1
Conversion of an aperiodic cipher into periodic form	Lsomorphe, blocking o
Converting auto-key text to periodic terms.--- 112	
Cryptanalytic coincidence test...-.-.-.-.-...--- 58	Keyıng, fixed.
Cryptographic arithmetic-.------------------100	Keying cycles, interaction
Cryptographic periodicity, nature	Keying unts
Cyclic phenomena	Constant length_
Enciphering equations	Keys, extended, nonrepeating, runnug.------- 50
Encupherment by word lengths	
185922-39-0 (11)	

Lengthy keys
Systems usingMechanical methods of producingMaking the κ test, general procedureMatching of frequency distributionsMonoalphabeticity or Φ test
\qquadMonographe coincidence, probability of
Repetitions-Continued
Nonperiodic 3
Partially periodic 3
Sugnificant 25
Resultant key 4,52
Running-key cipher, solution of 53, 56, 63, 71
Runnng-key system 51
Secondary key 4, 52
Nonrepeating key systemSeparators, word15
Sequences, uninterrupted 26
Solution by superimposition 23, 53, 58
Spurious plann text 43, 104
Statistical test 26
Stereotypic phraseology 14
Superimposable periods 23
Superimposed sequences and the coincidence test 58
Superimposition 53
Basic principles of 53
Correct and incorrect 58
Solution by 53
Diagram 61
Synoptic table 97, 119
Symmetry of position, direct 9
Variable-length
Groupings of keyıng sequence 19
Key enciphering 19
Plain-text groupings 5
58
Probability of monographic coincidenceProbability, theory of52, 55, 82
Progressive alphabet system 52, 55
Reconstruction skeleton
Vigenere method 46
Wheatstone cryptograph 52
Word habits of the enemy, familiarity with 14
RepetitionsCompletely periodicWord-length encipherment, solution of5
Word separators 15

Analytical Key for Military Cryptanalysis, Part III

[Numbers in parentheses refer to Paragraph Numbers in this text]

[^0]: - Military Cryptanalyss, Part II, par 450

[^1]: ${ }^{\text {b }}$ The student will have to imagine the messages written out as continuous sequences on cross-section paper

[^2]:

[^4]:

