THIS FILE IS MADE AVAILABLE THROUGH THE DECLASSIFICATION EFFORTS AND RESEARCH OF:

THEB BLACK VAUMT

THE BLACK VAULT IS THE LARGEST ONLINE FREEDOM OF INFORMATION ACT / GOVERNMENT RECORD CLEARING HOUSE IN THE WORLD. THE RESEARCH EFFORTS HERE ARE RESPONSIBLE FOR THE DECLASSIFICATION OF THOUSANDS OF DOCUMENTS THROUGHOUT THE U.S. GOVERNMENT, AND ALL CAN BE DOWNLOADED BY VISITING:

HTTP:I/WWW.BLACKVAULT.COM
YOU ARE ENCOURAGED TO FORWARD THIS DOCUMENT TO YOUR FRIENDS, BUT PLEASE KEEP THIS IDENTIFYING IMAGE AT THE TOP OF THE PDF SO OTHERS CAN DOWNLOAD MORE!

Restripica

Declassified and approved for release by NSA on 09-19-2005 pursuant to E.O. 12958, as amended

WAR DEPARTMENT
office of the chief signal officer washington
\qquad

MILITARY CRYPTANALYSIS
 Part II

SIMPLER VARIETIES
OF POLYALPHABETIC SUBSTITUTION SYSTEMS

WILLIAM F FRIEDMAN
Principal Cryptanalyst
Chief of Signal Intelligence Section War Plans and Training Division

PREPARED UNDER THE DIRECTION OF THE CHIEF SIGNAL OFFICER

UNITED STATES

MILITARY CRYPTANALYSIS. PART II. SIMPLER VARIETIES OF POLYALPHABETIC SUBSTITUTION SYSTEMS

ection
I Introductory remarks Paragraph Pages
II Cipher alphabets for polyalphabetic substitution. 5-7 4-9
Theory of solution of repeating-key systems 8-12V Rep13-15
VI Repeating-key systems with mised cipher alphabets, II 7-30VII Theory of indirect symmetry of position in secondary alphabets31VIII Application of principles of indirect symmetry of position 32-36

X Repeating-key systems with mised cipher alphabets, IV 41-46 Appendis 1 10-16
17-23
24-48

Section I

INTRODUCTORY REMARKS

The essential dafference betreen monoalphabetic and polyalphabetic substitution
Paragraph

1 The essential difference between monoalphabetic and polyalphabetic substitution - a In the substitution methods thus far discussed it has been pointed out that their basic feature is that of monoalphabeticity From the cryptanalytic standpoint, neither the nature of the cipher symbols, nor their method of production is an essentıal feature, although these may be differentiating characteristics from the cryptographic atandpomt It is true that in those cases designated as monoalphabetic substitution with variants or multiple equivalents, there is a departure, more or le s considerable, from strict monoalphabeticity In some of those cases, indeed, there may be arailable two or more wholly independent sets of equivalents, which, moreover, may even be arranged in the form of completely separate alphabets Thus, while a loose terminology might permit one to designate such systems as polyalphabetic, it is better to reserve this nomencloture for those cases wherein polyalphabeticity is the essence of the method, specifically introduced with the purpose of imparting a positional variation in the substitutive equivalents for plain-text letters, in accordance with some rule directly or indirectly connected with the absolute positions the plam-text letters occupy in the message This point calls for amplafication
b In monoalphabetic -ubstitution with variants the object of having different or multiple equivalents is to suppress, so far as possible by smple methods, the characteristic frequencies of the letters occurring in plain text As has been noted, it is by means of these characteristic frequencies that the cipher equivalents can usually be identified In these systems the varying equivalents for plan-text letters are subject to the free choice and caprice of the enciphering clerk, if he is careful and conscientious in the work, he will really make use of all the different equivalents afforded by the cystem, but if he as slip-shod and hurned in his xork, he will use the same equivalents repeatedly rather than take pains and time to refer to the charts, tables, or diagrams to find the variants Moreover, and this is a crucial point, even if the individual enciphering clerks are extremely careful, when many of them employ the same system it is entirely impossible to insure a complete diversity in the encıpherments produced by two or more clerks working at differcnt message centers The result is mevitably to produce plenty of repetitions in the texts emanating from several stations, and when texts such as these are all avalable for study they are open to solution, by a compaison of their sumlarities and differences
c In true polyalphabetic systems, on the other hand, there is established a rather definite procedure which automatically determines the shifts or changes in equivalents or in the manner in which they are introduced, so that these changes are beyond the momentary whim or chonce of the encipheing clerk When the method of shufting or changing the equivalents is scientufically sound and sufficiently complex, the research necessary to establish the values of the cipher characters is much more prolonged and difficult than is the case even in complicated monoalphabetic substitution with variants, as will later be seen These are the objects of true polyalphabetic substitution systems The number of such systems is quite large, and it wall be possible to
describe in detal the cryptanalysis of only a few of the more common or typical examples of methods encountered in practical military communications
d The three methods, (1) single-equivalent monoalphabetic substitution, (2) monoalphabetic substitution with variants, and (3) true polyalphabetic substitution, show the following A In method (1), there is a 26 and cipher-text units
A In method (1), there is a set of 26 symbols, a plain-text letter is always represented by one and only one of these symbols, conversely, a symbol always represents the same plain-text letter The equivalence between the plan-text and the cipher letters is constant in both enclherment and decipherment
B In method (2), there is a set of n symbols, where n may be any number greater than 26 and often is a multuple of that number, a plan-text letter may be represented by $1,2,3$, dfferent symbols, conversely, a symbol always represenis the same plan-text letter, the same as is the case in method (1) The equivalence between the plam-text and the cupher letters is

C In method (3) there is, as in the first method, a set of 26 symbols, a plein-text letter may be replesented by $1,2,3, \quad 26$ different symbols, conversely, a symbol may repiesent $1,2,3,26$ different plann text letters, depending upon the system and the specific key The equivalence between the plam-text and the cipher letters is variable in both encipherment and decioherment

2 Pıimary classification of polyalphabetic systems - $a \quad \Lambda$ primaly classification of polyalphabetic svstems into two rather distinct types may be made (1) periodic systems and (2) aperiodic systems When the enciphering process involves a cryptographec treatment which is repettitive in character, and which results in the production of cycluc phenomena in the cryptographe text, the system is termed periodic When the enciphering plocess is not of the type described in the foregoing general terms, the svstem is termed aperiodu The substitution in
both cases involves the use of two ol more cuphel alphabels both cases involves the use of tuo or more cipher alphabeis
hich case they are said to be patent, or they may not be exhibited be evhibited externally, in which case they are said to be patent, or they may not be exhibited extennally, and must be uncovered by a pieliminary step in the analysis, in which case they are sadd to be latent The
periodicity may be quite definite in nature, and therefore determanable with mathematica periodicity may be quite definte in nature, and therefore determinable with mathematical instances the periodicity is more or less flexible in character and even though tion in olier
${ }^{1}$ There 18 a monoalphabetic method in which the inverse result obtains, the correspondence being constant in encipherme it but variable in decipherment, this is a method not found in the usual boohs on cryptography writhg and, in other editions, Cryptography The method is to draw up an enciphering alphabet such as the following (using Poe's example)

In such an alphabet, because of repetitions in the cupher component, the plan-text equivalents are subject to a gree of vamabilhty, as will be seen in the deciphering alphabet

This type of variabilty gives rise to ambiguties in decipherment A cmpner group such as TIE。 would yreld character would be pras aneal Friedman, Willham F, Edgar Allan Poe, Cryptographer, Signal Corps Bulletins Nos 97 and $98,1937-38$
munable mathematically, allowance must be made for a degree of variabllty subject to limits controlled by the specific system under investigation The periodicity is in the case said to be lexible, or zarable wnthun limets

3 Prımary classification of periodıc systems - a Periodic polyalphabetic substitution systems may primarily be classfied into two kinds
(1) Those in which only a few of a whole set of cipher alphabets are used in enciphering individual messages, these alphabets being employed repeatedly in a fixed sequence throughouteach message Because it is usual to employ a secret word, phrase, or number as a key to determune the number, identity, and sequence with which the cipher alphabets are employed, and this key is used over and over again in encipherment, this method is often called the repeatung-key system, or the repeating-alphabet system It is also sometimes referred to as the multiple-alpha bet system because if the keying of the entire message be considered as a whole it is composed of multiples of a short key used repetitively ${ }^{2}$ In this text the designation "repeating-key system" will be used
(2) Those in which all the clpher alphabets comprising the complete set for the system are employed one after the other successively in the encipherment of a message, and when the last alphabet of the series has been used, the encipherer begins over agaun with the first alphabet This is commonly referred to as a progressive-alphabet system because the cipher alphabets are used in progression

4 Sequence of study of polyalphabetic systems - a In the studies to be followed in connection with polyalphabetic systems, the order in which the work will proceed conforms very closely to the classifications made in paragraphs 2 and 3 Periodic polyalphabetic substitution ciphers will come first, because hey are, as a rule, the ste to a comprehension of how aperiodic systems ore solved But in the final analysus the solution of examples of both types rests upon the conversion or reduction of polyalphabeticity into monoalphabeticity If this is possible, the conversion or reduction of polyalphabecicy re sufficient data in the final monoalphabetio distributions to permit of solution by red the the sump
b Frrst in the order of study of periodic systems will come the analysis of real
b First in the order of study of periodic systems will come the analysis of repeating-key quently, ciphers of the progressive type will be discussed There will then follow a more or less detailed treatment of aperiodic systems
${ }^{2}$ French terminology calls this the "double-key method", but there is no logic in such nomenclature
(2) The plan component is a mixed sequence, the cipher component is normal (The

Section II

CIPHER ALPHABETS FOR POLYALPHABETIC SUBSTITUTION

Classification of cupher alphabets upon the basis of their derivation Prumary components and secondary alphabets
nmary componente, ccpher disks, and square table
5 Classification of cipher alphabets upon the bass of ther dot tion processes in polyalphabetic methods unvolve the use of a plurality of cipher alphabets The latter may be derived by various schemes, the exact nature of which determines the princets characterstics of the cipher alphabets and plays a very important role in the preparation and solution of polyalphabetic cryptograms For these reasons it is advisable, before proceeding to a discussion of the principles and methods of analysis, to point out these various types of cipher alphabets, show how they are produced, and how the method of their production or derivation may be made to yeld important clues and short-cuts in analysis
b A primary classification of cupher alphabets for polyalphabetic substitution may be made into the two following types
(1) Independent or unrelated cipher alphabets
(2) Derived or interrelated cupher alphabets
c Independent clpher alphabets may be disposed of in a very few words They are merely separate and distinct alphabets showing no relationship to one another in any way They may The solution of cryptograms written by means of such a of Elementary Miltary Cryptography reason of the absence of any relationship between the alphabets is rendered more difficult bv those of any of the other alphabets of the same cryptogram On the other hapd from thabet and view of practicability in their production and then handling in cryptographing and decryptograph ing, they present some difficulties which make them less favoled by cyptographers that apher alphabets of the second type
d Derved or interrelated alphabets, as their name indicates, are most commonly produced by the interaction of two primary components, which when juxtaposed at the various ponts of comcidence can be made to yield secondary alphabets

6 Primary components and secondary alphabets - Two basic, slidable sequences or components of n characters each will yield n secondary alphabets The components may be classified according to various schemes For cryptanalytic puiposes the following classification will be
found useful

Case A The primary components are both normal sequences
(1) The sequences proceed in the same direction (The secondary alphabets are direct
standard alphabets) (Pars 13-15)
(2) The sequences proceed in opposite durections (The secondary alphabets are reversed standard alphabets, they are also reciprocal cipher alphabets) (Par 132, 14g)

Case B The primary components are not both normal sequences
(1) The plain component is normal, the cupher component is a muxed sequence (The secondary alphabets are muxed alphabets) (Par 16-25)
${ }^{1}$ See Sec, VIII and IX, Elementary Military Cryptography
secondary alphabets are muxed alphabets) (Par 26)
) Both components are mixed sequence
(a) Components are identical mixed sequences

1 Sequences proceed in the same durection mixed alphabets) (Par 28)
II Sequences proceed in opposite durections (The

(b) Components are different mixed sequences (The secondary alphabets are mixed alphabets) (Par 39)
7. Primary components, cıpher disks, and square tables - a In precedng texts it has been shown that the equivalents obtamable from the use of quadricular or square tables may be duplicated by the use of revolving cipher disks or of sliding primary components It was also stated that there are vanous ways of employing such tables, disks, and sliding components phernalia, smce the specific equvalents obtaned from one method may be altogether different from those obtained from another method But from the cryptanalytic point of new the diversity referred to is of little significance, only in one or two cases does the specific method of employing these cryptographic instrumentalities have an mportant bearing upon the procedure in cryptanalysis However, it is advisable that the student learn something about these different methods before proceeding with further work
b There are, not tuo, but four letters involved in every case of finding equivalents bv means of shdug primary components, furthermore, the determination of an equivalent for a given plain-text letter is representable by two equations involving four elements, usually lotters Three of these letters are by this time well-known to and understood by the student, $V I Z, \theta_{k}, \theta_{p}$, and θ_{0}. noting it her for tho 1 equivalents Suppose these components are the following sequences

> (1) ABCDEFGHIJKLMNOPQRSTUVWXYZ
> (2) FBPYRCQZIGSEHTDJUMKVALWNOX

Now suppose one is merely asked to find the equivalent of P_{D} when the key letter is K Without furthel specification, the capher equivalent cannot be stated, for it is necessary to know not only which K will be used as the ley letter, the one in the component labeled (1) or the one in the component labeled (2), but also what letter the K_{k} will be set agaust, in order to justapose the two components Most of the time, in preceding texts, these two factors have been tacitly assumed to be fixed and well understood the K_{K} is sought in the muxed, or cipher component, and this K is set agamst A in the normal, or plain component Thus

Plan
Index
(1) Plaun.... .. ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ
(2) Cipher-....... FBPYRCQZIGSEHTDJUMKVALWNOX

Gipher ${ }_{\text {Ker }}^{\text {for }}$
With the setting $P_{p}=Z_{\text {o }}$
c The letter A in this case may be termed the index letter, symbolized A_{1} The index letter constitutes the fourth element involved in the two equations applicable to the finding of equivalents by slidng components The four elements are therefore these

> (1) The key letter, θ_{K} (2) The index letter, θ_{1} (3) The plan-text letter, θ_{D} (4) The clpher letter, θ_{c}

The index letter is commonly the intial letter of the component, but this, too, is only a convention It might be any letter of the sequence constituting the component, as agreed upon by he correspondents However, in the subsequent discussion it will be assumed that the index letter is the intial letter of the component in which at is located, unless otherwise stated
d In the foregoing case the enciphering equations are as follows

$$
\text { (I) } K_{k}=A_{1}, P_{D}=Z_{c}
$$

But there 15 nothing about the use of slidng components which excludes other methods of finding equivalents than that shown above For instance, despıte the labeling of the two components as shown ahore, there is nothung to prevent one from seeking the plan-text letter in the com ponent laboled (2), that is, the cipher component, and taking as its cipher equivalent the lette Cipher Thus

1) ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ
(2)

FBPYRCQZIGSEHTDJUMKVALWNOX
Thus
Plain Kev
c Sunce cquations (I) (II) $\mathrm{K}_{\mathrm{k}}=\mathrm{A}_{1}, \mathrm{P}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
e
Since equations (I) and (II) yield dufferent resultants, even with the same indes, key, and plan-text letters, it is obvious that an accurate formula to cover a specific pare of encipherng equations must located Thus, equations (I) at component each of the four letters comprising the (I)
(II) K_{k} in component (2) $=\mathrm{A}_{1}$ in component (1), P_{p} in component (1) $=\mathrm{Z}_{\mathrm{c}}$ in component (2)

For the sake of brity $=A_{1}$ in component (1), P_{p} in component (2) $=K_{\mathrm{c}}$ in component (1)
For the sake of brevity, the following notation will be used
(1) $K_{k / 2}=A_{1 / 2}, P_{p / 1}=Z_{c / 2}$
(2) $K_{k / 2}=A_{1 / 2}, P_{D / 2}=K_{c / 1}$
f Employing two slding components and the four letters entering into an enciphering and the same set of four basic elements These twelve differences the same set of components of twelve different enciphering conditions, as set forth below (the notation adoptem a set paragraph e is used)
(1) $\theta_{k / 2}=\theta_{1 / 1}, \theta_{D / \Lambda}=\theta_{c / 2}$
(2) $\theta_{\mathrm{k} / 2}=\theta_{1 / 1}, \theta_{\mathrm{D} / 2}=\theta_{\mathrm{c} / 1}$
(3) $\theta_{\mathfrak{K} / \Lambda}=\theta_{1 / 2}, \theta_{D^{\prime} / 2}=\theta_{c / 2}$
(4) $\theta_{\mathrm{k} / 1}=\theta_{1 / 2}, \theta_{\mathrm{D} / 2}=\theta_{\mathrm{c} / 1}$
(5) $\theta_{\mathrm{k} / 2}=\theta_{\mathrm{p} / 1}, \theta_{\mathrm{s} / 1}=\theta_{\mathrm{c} / 2}$
(6) $\theta_{k / 2}=\theta_{0 / 1}, \theta_{1 / 2}=\theta_{p / 2}$
(7) $\theta_{\mathfrak{k} / 2}=\theta_{\mathrm{D} / 1}, \theta_{1 / 2}=\theta_{\mathrm{o} / 1}$
(8) $\theta_{K / 2}=\theta_{c / 1}, \theta_{1 / 2}=\theta_{D / 1}$
(9) $\theta_{\mathrm{k} / 1}=\theta_{\mathrm{D} / 2}, \theta_{1 / 1}=\theta_{\mathrm{c} / 2}$
(10) $\theta_{\mathrm{x} / \Lambda}=\theta_{\mathrm{c} / 2}, \theta_{1 / h}=\theta_{\mathrm{p} / 2}$
(11) $\theta_{\mathbf{k} / 4}=\theta_{\mathbf{p} / 2} ; \theta_{1 / 2}=\theta_{\mathbf{o} / 1}$
(12) $\theta_{\boxed{\Sigma} / 1}=\theta_{0 / 2}, \theta_{1 / 2}=\theta_{\mathrm{D} / 1}$

- The iwelve resultants obtamable fiom juxtaposing shding components as indicated under the preceding subparagraph may also be obtamed etther from one square table, in which case welve difierent methods of finding equivalents must be applied, or from twelve different square tables, in which case one standard method of finding equivalents will serve all purposes
h If but one table such as that shown below as Table 1- A is employed, the varrous methods of finding equivalents are difficult to keep in mind

Table I-A

$$
\begin{aligned}
& \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ }
\end{aligned}
$$

Q $\underset{Z}{Z}$ Z
I G S E H T D J U M K V A
G S E H T D J U
S E H T D J U M
E \bar{H} T $\bar{D} \bar{J}$ U M
$\bar{D} \frac{J}{J} \mathcal{U}$
J U M K
U M K V A
M K V A L
V
$\frac{A}{L}-\frac{L}{W}$
\bar{N} O
OX

For example

(1) For enciphering equations $\theta_{\mathbf{K} / 2}=\theta_{1 / 2}, \theta_{D / 2}=\theta_{0 / 2}$

Locate $\theta_{\mathfrak{p}}$ in top sequence, locate θ_{k} in first column,
θ_{c} is letter within the square at intersection of the two lines thus determined Thus,

$$
\mathrm{K}_{\mathrm{k} / 2}=\mathrm{A}_{1 / 1}, \mathrm{P}_{\mathrm{p} / 1}=\mathrm{Z}_{\mathrm{o} / 2}
$$

(2) For enciphering equations $\theta_{k / 2}=\theta_{1 / 1}, \theta_{\mathrm{D} / 2}=\theta_{\mathrm{e} / 1}$

Locate θ_{x} in first column, follow line to right to $\theta_{\mathfrak{p}}$, proceed up this column, θ_{0} is letter at top

$$
\mathrm{K}_{\mathrm{k} / 2}=\mathrm{A}_{1 / 1}, \mathrm{P}_{\mathrm{D} / 2}=\mathrm{K}_{\mathrm{c} / 2}
$$

(3) For enciphering equations $\theta_{\mathrm{K} / 1}=\theta_{1 / 2}, \theta_{\mathrm{D} / 1}=\theta_{\mathrm{c} / 2}$

Locate θ_{k} in top sequence and proceed down column to θ_{1}
Locate θ_{n} in top sequence, θ_{c} is letter at other coriner of rectangle thus formed Thus $\quad \mathrm{K}_{\mathrm{k} 1}=\mathrm{A}_{1 / 2}, \mathrm{P}_{\mathrm{D} 11}=\mathrm{X}_{\mathrm{c}}$

Only three different methods have been shown and the student no doubt already has encountered difficulty in keeping them segregated in his mind It would obviously be very confusing to try
to remember all twelve methods But if one standard or fixed method of find to remember all twelve methods But if one standard or fixed method of finding equivalents is follow ed with several different tables, then this difficulty disappears Suppose that the following
method is adopted Arrange the square so that the plain-text letter may be sought in a separate method is a dopted Arrange the square so that the plain-text letter may be sought in a separate
sequence, aranged alphabetically, above the square and so that the key letter may be sought in a separate sequence, also arranged alphabetically, to the left of the square, look for the plamtext letter in the top row, locate the key letter in the 1st column to the left, find the letter standing within the square at the intersection of the vertical and horizontal lines thus determined readly be constructed They to the twelve different conditions listed in subparagraph f, can readny be constructed They are all shown in Appendis 1, pp 96-107
In the first place, the tables may be pared so that one of a certan interestung points are noted other of the pain mav serve for deciphering, or vice versa For example tol enciphering and the reciprocal relationship to each other, III and IV, V and VI, VII and VIII, IX ond X XI and XII In the second place, the internal dispositions of the letiers, althourh the tables are XI and from the same pair of components, are quite diverse For example, in table I-B the horizontal sequences are identical, but are merely displaced to the right and to the left different intervals according to the successive key letters Hence this square shows what may be termed a hor zontally-displaced, direct symmetry of the cipher component Vertically, it shows no symmetry, or if there is symmetry, it is not visible ${ }^{2}$ But when Tible I-B is more carefully examined, an if ene, or indirect, vertical symmetry may be discerned whese at first glance it is not apparent any ars in gous par of letters in the column is the same as the interval between the members of the homoloexample, consideı the and 10 . and G in the $2 d$ column, and J and W in cipher component is 7 intervals, the instance beth column The distance between P and G on the 7 intervals This phenomenon imples a kied of hidd \mathcal{J} and on the same component is also the cipher square In fact, it may be stated that every toble which sets forth in systemetry within the various secondary alphabets derivable by sliding two promery sequences throug all foint coincidence to find cipher equivalents must show some kind of symmetry, both horizontally and
${ }^{2}$ It is true that the first column withn the table chows the plam-component sequence, but this is merel because the method of finding the equivalents in this case is such that this sequence is bound to appear metha
column, since the suceessive key letters are A, B, C. the planin component in this case The same is true of Tables V and XI, it is also applucable to the first row of Tables IX and X
vertically The symmetry may be termed vessble or derect, if the sequences of letters in the nows (or columns) are the same throughout and are identical with that of one of the primary components, it may be termed hudden or indirect if the sequences of letters in the rows or columns are different, apparently not reated Whe
 the

7 able	Horzontal				Vertical			
	Vistble or direct		Invible or ndiuect		Visible or direct		Invsible or indrect	
	$\begin{aligned} & \text { Follows } \\ & \text { plairi } \\ & \text { component } \end{aligned}$	$\begin{aligned} & \text { Follows } \\ & \text { clpher } \\ & \text { component } \end{aligned}$	$\begin{gathered} \text { Hollows } \\ \text { playn } \\ \text { component } \end{gathered}$	$\begin{gathered} \text { Foplows } \\ \text { compure } \end{gathered}$	$\begin{gathered} \text { Foillows } \\ \text { colimutant } \\ \text { componen } \end{gathered}$	$\begin{gathered} \text { Follows } \\ \text { colif } \\ \text { cor } \end{gathered}$		$\begin{gathered} \text { Follows } \\ \text { colpher } \\ \text { coupponent } \end{gathered}$
I-		x	x					x
III--		-					x	
IV.			x		x	x		
V.-		x						x
Vİ-	x		x				x	
VIII.							x x	
IX				xx				\times
X								x
XI- XII			¢		x			
		x				x		

Of these twelve types of cipher squares, corresponding to the twelve different ways of using a par of shding primary components to derive secondary alphabets, the ones best known and most often encountered in cryptographic studies are Tables I-B and II, referred to as beng of the Vigenère type, Tables V and VI, referred to as being of the Beaufort type, and Tables IX and X, referred to as being of the Delastelle type It will be noted that the tables of the Delastelle type show no direct or visible symmetry, etther horizontally or vertically and because of
this are supposed to yreld more securnty than do any of the other types of tables But it will presently be shown that the supposed increase in security is more illusory than real
k The foregoing facts concerning the various types of quadricular tables generated by diverse methods of using shding primary components or their equivalent rotating cipher disks will be employed to good advantage, when the studies presently to be undertaken will bring the student orer not to
 nents will be selected from among the twelve avalable, as set forth in the preceding subparagraphs Unless otherwise stated, this method will be the one denoted by the first of the formulae listed in subpar $f, v z z \quad \theta_{v / 2}=\theta_{1 / 1}, \theta_{D 11}=\theta_{c}$
Calling the plan component " 1 " and the cipher component " 2 ", this will mean that the keyletter on the cipher component will be set opposite the index, which will be the first letter of the plain component, the plan-text letter to be enciphered will then be sought on the plan component and its equivalent will be the letter opposite it on the cipher component

Section III
THEORY OF SOLUTION OF REPEATING-KEY SYSTEMS
The three steps in the analysis of repeating-key systems
First stcp findmg the length of the period.-
General remarks on factorng.
hurd step solving the me clpher text into the component monoalphabets.
8 The three steps in the analysis of repeating-key systems - a The method of enciphering according to the principle of the repeating key, or repeating alphabets is adequately explaned in Section XI of Elementary Milutary Cryptography, and no further reference need be made at this time The analysis of a cryptogram of this type, regardless of the kind of cipher alphabets employed, or their method of production, resolves itself into three distinct and successive steps of the exact number of alphabets involyed in the cryptogram (2) Allocation or distribution of the letters of the cogham

號 bets to which they belong This is the step which reduces the polyalphabetic text to monophabetic terms,

Analysis of the individual monoalphabetic distributions to determme plan-text values of clpher lettcrs in each distribution or alphabet
b The foregong steps will be treated in the order in which mentioned The first step may e described briefly as that of determining the period The second step may be described breefly as that of reduction

9 First step
First step. finding the length of the period - a The determination of the period, that is, the length of the key or the number of cipher alphabets involved in a cryptogram enciphered by the repeating-key method is, as a rule, a relatively simple matter The cryptogram itself usually manifests externally certain phenomena which are the direct result of the use of a repeating key The principles involved are, however, so fundamental in cryptanalysis that ther chort example of short example of encipherment, shown in Fig 1

Message

THE ARTILLERY BATTALION MARCHING IN THE REAR OF THE ADVANCE GUARD KEEPS ITS COMBAT TRAIN WITH IT INSOFAR AS PRACTICABLE
(10)
[Key BLUE, using direct standard alphabets] Cipher Alphabets

BCDEFGHIJKLMNOPQRSTUVWXYZA

b Regardless of what system is used, identical plain-text letters enciphered by the same apher alphabet ${ }^{1}$ must yield identical cipher letters Referring to Fig 1, such a condition is drought about every time that identical plain-text letters happen to be enciphered with the same key-letter, or every time identical plam-text letters fall into the same column in the encipherment Now since the number of columns or positions with respect to the key is very limited condition in plan text, it follows that there will be in a message of fair length many cases where identical plam-text letters must fall into the same column They will thus be enciphered by the same cipher alphabet, resulting, therefore, in t_{1} (moduction of many identical letters in the cipher text and these will represent identical letters in the plain text When identical plam-text polygraphs fall into adentical columns the result is the formation of identical cipher-text polygraphs, that is, repetitions of groups of $2,3,4$, letters are exhibited in the cryptogram Repetitions of this type will hereafter be called causal repetitions, because they are produced by a definite, ta aceable cause, vzz, the encipherment of identical letters by the same cipher alphabets
c It will also happen, however, that dufferent plain-text letters falling in different columns will, by mere accident, produce identical cipher letters Note, for example, in Fig 1 that in Column 1, R_{p} hecomes S_{c} and that in Column 2, H_{p} also becomes S_{c}.The production of an identical and
 mere conncidence, or an d acciental repetitions
d A consideration of the phenomenon ponted out in c makes it obvious that in polyalphabetic clphers it is important that the cryptanalyst be able to tell whether the repetitions he finds
in a specfic case are causal or accidental in therr orgin, that is, whether they represent actual in a specific case are causal or accidental in their orgin, that is, whether they represent actual encipherments of identical plan- brought about purely fortuitously
e Now accidental repetitions will, of course, happen farrly frequently with individual letters, but less frequently with digraphs, be ause in this case the same kand of an "accident" must take place twice in succession Intuitively one feels that the chances that such a purely fortuitous coincidence will happen two times in succession must be much less than that it will happen ever y once in a whule in the case of single letters Simularly, intution makes one feel that the chances of such accidents happening in the case of three or more consecutive letters are still less than in the case of dgraphs, decreasing very rapidly as the iepetition increases in length
f The phenomena of cryptographic repetition may, fortunately, be dealt with statistically, thus taking the matter outside the realm of intuition and putting it on a firm mathematical or objective busis Moreover, often the statistical analysis will tell the cryptanalyst when he has arranged on cearranged his text properly, that is, when he is approaching or has reached monoalphabeticity in his efforts to reduce polyalphabetic text to its smplest terms However, in order to preserve continuity of thought it is deemed inadvisable to inject these statistical considerations at this place in the text proper, they have been meorporated in Appendix 2 hereof The student is advised to study the Appendux very carefully after he has finished reading this section of the text
g At this point it will merely be indicated that if a cryptanalyst were to have at hand only g At this point it will merely be indıcated that if a cryptanalyst were to have at hand only
the cryptogrum of $F_{1 g}$, with the repetitions underlined as below, a statistical study of the
${ }_{2}^{1} \mathrm{It}$ is to be understood, of course, that cipher alphabets with single equivalcnts are meant in this case ${ }_{2}^{2}$ The frequency with which this condition may be expected to oceur can be definitely calculated A discussion of this point falls beyond the scope of the present text
number and length of the repetitions withon the message (Par 5 of Appendix 2) would tell him that whle some of the diglaphic repetitions may be accuental, the chances that they all are accidental are small In the case of the tetragraphic repetition he would realize that the chances of its being accidental are very small indeed

h A consideration of the facts therefore leads to but one conclusion, $v z z$, that the repetitions exhibited by the cryptogram under investigition are not acculental but are causal in their origin, and the cause is in this case not diffic ult to find repctitions in the plain text were actually en-
 Tote, for evample that UYSE in Fir 1 reppeseuts in both cases the plon-text polygraph THEA The first time it occurred it fell in positions $1-2-3-4$ with respect to the key the second time it occurred it happened to fall in the very same relative positions, although it might just as well occurred it happened to fall in the very same relative positions, although it might just as well key, $v z, 2-3-4-1,3-4-1-2$, or $4-1-23$
\imath Lest the student be nusled, however, a few more words are necessary on thas subject In the precedung subparagraph the word "happened" was used, this word correctly expresses the idea in mind, because the insertion or deletion of a smgle plan-text letter between the two occurrences would have thrown the second occurrence one letter forward or backward, respectively, and thus caused the polygraph to be enciphered by a sequence of alphabets such as can no longer produce the upher polygraph USYE from the plan-text polygraph THEA On the other hand, the insertion or deletion of this one letter might bring the letters of some other polygraph into simular columns so that some other repetition would be exhibited in case the USYE repetition had thus been suppiessed
\jmath The encipherment of simular letters by similar cipher alphabets is therefore the cause of the production of iepetitions in the cipher text in the case of repeating-key ciphers What principles can be derived from this fact, and how can they be employed in the solution of crypto. grams of this type?
k If a count is made of the number of letters from and including the first USYE to, but not including, the second occurrence of USYE, a tot.l of 40 letters is found to intervene between the two occurrences This number, 40, must, of course, be an exact multiple of the length of the key Having the plan-text before one, 1 is easily seen that it is the 10th multiple, that is, the 4 -letter ey解 40 would be equal to the length of the hey The word "sofely" is used in the preceding sentence to mean that the interral 40 ppples to a repetion of 4 latters and 4 has been shown that the chances that this repetition ap accidental are small The factors of 40 are $2,4,5,8,10$ and 20 chances that this repetition 15 accidental are small The factors of 40 are $2,4,5,8,10$, and 20
So far as this single repetition of USYE is concerned, if the length of the key were not known, all that could be said about the latter would be that it is equal to one of these factors The repetition by itself gives no further mdications How can the exact factor be selected from among a list of several possible factors?
l Let the intervals between all the repetitions in the cryptogram be listed They are as

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

m Are all these repetitions causal repetitions? It can be shown (Appendix 2, par 4c) that the odds aganst a theory that the UYSE repetition is ac cidental are about 99 to 1 (since the probability for its occur rence is 01) It can also be chown that the odds aganst a theory that the 10 digraphs which occur two or more times are accidental repetitions an over 4 to 1 (Appendix
2 , par $5 c$), the odds against a theory that the two digraphs which 2, par 5c), the odds aganst a theory that the two digraphs which occur 3 times are accidental
repetitions are quite large \quad (Probability is calculated to be about 06) The chances are great, therefore, that all or nearly all these repetitions are causal Certanly the chances arans the two occurrences of the tetragraph UYSE and the three occurrences of the two chances agannst (LE and US) being accidental are quite high, and it is therefore not astomshing that the intervals between all the various repetitions, except in one case, contan the factors 2 and 4
n This means that if the crpher is written out in either 2 columns or 4 colu
repetitions (except the CX repetition) would fall into the same columns From this it follows that the length of the key is either 2 or 4, the latter, on practical grounds, being more probable than the former Doubts concerning the matter of choosing between a 2 -letter and a 4 -letter key will be dissolved when the cipher test is distributed into its component unliteral frequency distributions
o The repeated digraph CX in the foregoing message is an accidental repetition, as will be appaient by referring to FIg 1 Had the message been longer there would have been more such accidental repetitions, but, on the other hand, there would be a proportionately greater number of causal repetitions This is because the phenomenon of repetition in plain text is
so all-pel vading so all-per vading
p Sometimes it happens that the cryptanalyst quickly notes a repetition of a polygraph of four or move letters, the interval between the first and second occurrences of which has only two factors, of which one is a relatively small number, the other a relatively high incommensurable number He may therefore assume at once that the length of the key is equal to the
smaller factor without searching for additional recurrences upon wheh to smaller factor without searching for additional recurrences upon which to corroborate his
assumption Suppose, for example, that in a relatively chort cryptogram the assumption Suppose, for example, that in a relatively chort cryptogram the interval between 203, the factors of which are 7 and 29 Evidently the number of alphabets may at once be
assumed to be 7 , unless one is dealing with messages exchanged among correspondents known to use long keys In the latter case one could assume the number of alphabets to be 29
q The foregoing method of determining the period in a polyalphabetic cupher is commonly eferred to the hterature as "factoring the intervals between repetitions", or more often it is simply called "factonng" Because the latter is an apt term and is brief, it will be employed hereafter in this text to designate the process

10 General remarks on factoring - a The statement made in Par 2 with respect to the cyclic phenomena sad to be exhibited in cryptograms of the periodic type now becomes clear The use of a short repeating key produces a periodicity of recurrences or repetitions collectively termed "cyclic phenomena", an analysis of which leads to a determunation of the length of the period or cycle, and this gives the length of the key Only in the case of relatively short cryptograms enciphered by a relatively long key does of the number of cipher alphat indication and test of its
 factorng will sow the defnite results, and conversely the fact not doefinite results at once indicates that the cryptogram is not a periodic, repeating-key cipher
b There are two cases in which factorng leads to no definte results One is in the case of monoalphabetic substitution ciphers Here recurrences are very plentiful as a rule, and the monoalphabetic substitution ciphers mare be factored, but the factors urll show no constancy, there will be several factors common to many or most of the recurrences This in itself is an indication of a monoalphabetic substitution cipher, if tae very fact of the presence of many recurrences fails to impress itself upon the inexperienced cryptanalyst The other case in which the process of factoring is nonsignuficant involves certan types of nonperiodic, polyalphabetic cuphers In certan of these cıphers recurrences of dugıaphs, tugraphs, and even polygraphs may be plentiful in a long message, but the intervals between such recurrences bear no definite multiple relation to the length of the key, such as in the case of the true periodic, repeating-key cipher, in which the alphabets change with successive letters and repeat themselves over and over agam
c Factoring is not the only method of determining the length of the period of a periodic, polyalphabetic substitution cipher, although it is by far the most common and easily apphed At this point it will merely be stated that when the message under study is relatively short in comparison with the length of the key, so that there are only a few cycles of cipher text and no long repetitions afordng a However, ant, they will be explaned subsequently It is desirable at this juncture merely to at this point, they in be explaned subsu it is de ised in practical work ther than factorng do exst and are used in practical work
d Fundamentally, he factorng process merely a more or less smple mathematical method of studying the phenomena of periodicity in cryptograms It will usually enable the cryptanalyst to asceltan definitely whether or not a given cryptogram is peniodic in nature, and in
so, the length of the period, stated in terms of the cryptographic unit moolued By the latter statement is meant that the factorng piccess may be appled not only in analyzing the periodicity manifested by cryptograms in which the plain-tevt units subjected to cryptographic treatment are monographic in nature (1 e are single letters) but also in studying the perrodicity exhbited by those occasional cryptogiams whelen the plan-text units are digraphe, trgraphe, or n-graphic in character The student should bear this point in mind when he comes to the study of substitution systems of the latter sort However, the present text will deal solely with cases of the former type, whenem the plan-text units subjected to ciyptographic treatment are sugle letters

11 Second step distributing the cipher toxt into the component monoalphabets -a After the number of cipher alphabets involved in the cryptogram has bcen ascertaned, the next step is to rewrite the message in groups corresponding to the length of the key, or in columnar
 elumnar method is used fall in the same coluril The letters are thus allocated or distributed into the respective cupher alphabets to which they belong This reduces the polyalphabetic text to monoalphabetce terms to monoalphabetic terms
b Then separate uniliteral frequency distributions for the thus isolated individual alphabets are compled For example, in the case of the cipher on page 13, naving determined that four ion is made of the letters in Column 1, 1 , the rest of the columns Each of the resultung distinbutions as therefore a monoalphabetic frequency astribution If these distributions do not give the characteristic arregular crest and trough appearance of monoalphabetic frequency distrbutions, then the anso whin led to the hypothess as regards the number of alphabets hevolved is fallacious In fact, the appearance of these individual distributions may be considered to be an index of the correctness of the factoring process, for theoretically, and practically, the individual distibutions constructed upon the correct hypothesis will tend to conform more closely to the rrregular crest and trough appearacne of a monoalphabetic fiequency distribution than will the graphe tables constructed upon an ncorrect hypothess
12. Third step.
12. Third step. solving the monoalphabetic distributions - The difficulty experienced in nalyzing the individual or isolated fiequency distributions depends nostly upon the type of cipher alpnabets that is used It is apparent that mixed alphabets may be used just as easily a
standard alphabets, and, of course, the cipher letters themselves give no indication as to which is the case However, just as it was found that in the case of monoalphabetic substitution ciphers, a umiteral frequency distıibution gives clear indications as to whether the cipher alphabet is a tandard or a mixed alphabet, by the relative positions and extencions of the crests and troughs in the table, so it is found that in the case of repeating-key ciphers, umliteral frequency distributions for the isolated or individual alphabets will also give clear indications as to whether thes lphabets are standard alphabets or mised alphabets Only one or two such frequency distribu uons aie necessary for this determination, if they appear to be standard alphabets, simular distributions can be made for the rest of the alphabets, but if they appear to be mixed alphabets, then is best to compile triliteral frequency distributions for all the alphabets The analysis of the alues of the cipher letters in each table proceeds along the same lines as in the case of monoalpha etic ciphers The analysis is more difficult only because of the reduced size of the tables, bu f the message be very long, then each frequency distribution will contan a sufficient number of elements to enable a speedy solution to be acheeved

Sectron IV
REPEATING-KEY SYSTEMS WITH STANDARD CIPHER ALPHABETS
olution by applying principles of frequency
 \qquad --...----- 13 ---.-. -.
13 Solution by applying principles of frequency
the following cryptogram be studied

B ETIMI ZHBHR AYMZM ILVME JKUTG
DPVXK QUKHQ LHVRM JAZNGGZVXE
D NLUFM PZJNV CHUAS HKQGK IPLWP
EAJZXI GUMTV DPTEJ ECMYS QYBAV
ALAHY POEXW PVNYE EYXEE UDPXR
BVZVI ZIIVO SPTEG KUBBR QLLXP
WFQGK NLLLE PTIKW DJZXI GOIOI
ZLAMV KFMWF NPLZI OVVFM ZKTXG
K NLMDF AAEXI JLUFM PZJNV_CAIGI
L UAWPR NVIWE JKZAS ZLAEM HS
A search for repetitions discloses the following short list with the intervals and factors above 10 omitted (for previous experience may lead to the conclusion that it is unlikely that the cryptogram involves more than 10 alphabets, showing the number of recurrences which it does)

Repestition	Location	Interval	Fastors
LUFMPZJNVC	D1, K_{3}	160	2, 4, 5, 8, 10
JZXIG	E1, H4	90	2, 3, 5, 6, 9, 10
EJK	B4, L2	215	
PTE	E3, G3	50	2, 5, 10
gGk	D4, Hl	85 55	
UKH	A1, C2	55 65	
ZLA	J1, L4	65 175	${ }_{3,5,7,}$
${ }_{\text {AS }}^{\text {AS }}$	D3, L3	115	
$\stackrel{\text { EJ }}{\text { FM }}$	A4, D1	57	3
FM	A5, J2	185	5
FM	J2, 34	12	2, 3, 4, 6
FM	J4, K3	20	2, 4, 5, 10
${ }_{\text {FM }}$	K3, A2, L4 4		
JA	A2, $\mathrm{Fl}, \mathrm{c} 1$ Jl	${ }_{75}^{60}$	$\begin{aligned} & 2,3, \\ & 3,5 \end{aligned}$
LA	J1, L4	65	5
LL	G5, H2	10	
NL	D1, H2		$3,5,7$ $3,5,9$
${ }_{\text {NX }}$	H2, C1, K1	45 20	2, $2,4,5,10$
ym	A3, B3	25	5

b The factor 5 appears in all but two cases, each of which meolves only a digraph It seems almost certann that the number of aly habets is five Since the text alicady appears in groups of
five letters, it is unnecessary to rewnite the meems five letters, it is unnecessary to rewnite the messare The next step is to make a uniliteral frequency distribution for Alphabet 1 to see if it can le detemmed whether or not standard alpha-
bets are involved It is as follows bets are involved It is as follows

Alphabif 1

c Although the modcations are not very clear cut, yet if one takes into consideration the small amount of data the assumption of a dircet standad alphabet $\bar{i} 1$ th $W_{c}=A_{p}$, is wor th further test Accordingly a simiar distribution is made for Alphabet 2

Alphabft 2

d There is every indication of a direct stand hrd alphah eet, with $H_{c}=A_{p}$ Let aimilar distributions be made for the last three alphebets They are as follows

Aiphabef 3

Alphabet 4

Alphabet 5

 e After but little experiment it is found that the distributions can best be made to fit the normal when the following values are assumed

Alrhabet 1 Alphabet 2 Alphabet 3 Alphabet 4 Alphabet 5

Alphabet 5 $\quad \mathrm{A}_{\mathrm{B}}=\mathrm{E}_{\mathrm{C}}$
the correctness of the analysis is, of coursessive equivalents of A_{p} WHITE The real proof of cryptogram The five complete cipher alphabets are as falues of the solved alphabets on the Plam. \qquad

 XYZABCDEFGHI- JKLMNOTUVWXYZ I J JKLMMNOPQRSTUVWXYZABCDEFG
 EFGHIJKLMNOPQRSTUVWXYZABCD figere 2
g Applying these values to the first few groups of our message, the following is found
\qquad $\begin{array}{lllllllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 \\ A & U & K & H & Y & \mathrm{~J} & \mathrm{~A} & \mathrm{M} & \mathrm{K} & \mathrm{I} & \mathrm{Z} & \mathrm{Y} & \mathrm{M} & \mathrm{W} & \mathrm{M} & \mathrm{J} & \mathrm{M} & \mathrm{I} & \mathrm{G} & \mathrm{X} & \mathrm{N} & \mathrm{F} & \mathrm{M} & \mathrm{L} & \mathrm{X}\end{array}$
Plann--- \qquad ENCOUNTEREDREDI NFANT RYEST
h Intelliginle text at once results, and the solution can now be completed very quickly The complete message is as follows

ENCOUNTERED RED INFANTRY ESTIMATED AT ONE REGIMENT AND MACHINE GUN COMPANY IN TRUCKS NEAR EMMITSBURG AM HOLDING MIDDLE CREEK NEAR HILL 543 SOUTHWEST OF FAIRPLAY WHEN FORCED BACK WILL CONTINUE DELAYING REDS AT MARSH CREEK HAVE DESTROYED BRIDGES ON MIDDLE CREEK BETWEEN EMMITSBURG-TANEYTOWN ROAD AND RHODES MILL
\imath In the foregoing example (which is typical of the system erroneously attributed, in cryptographic literature, to the French cryptogiapher Vigenère, although to do him justice, he made no clam of having "invented" it), direct standad alphabets were used, but it is obvious that reversed standard alphabets may be used and the solution accomplished in the same manner In fact, the now obsolete cupher dask used by the United States Army for a number of years ynelds exantly this type of cipher, which is also known in the literature as the Beaufort Cipher, and by other names In fitting the isolated frequenc y d

14 Solution by completing the plain-component sequence
14 Solution by completing the plain-component sequence - a Theie is another method solving thi type of cipher, which is worthwhie explaining, because the underlying principles will be found useful in many cases It is a modification of the method of solution by completing the plan-component sequence, alseady explaned in Milutary Cryptanalysss, Part I
b After all, the individual alphabets of a cipher such as the one just solved are merely direct standard alphabets It has been seen that monoalphabencic ciphers in which standard cipher alphabets are employed may be solved almost mechanically by completing the plancipher alphabets are employed may be solved almost mechancaly
component sequence The plan text reappears on only one generatrix and this generatrix is the same for the whole message It is easy to pick this generatrix out of all the other generatrices because it is the only one which yields inteHigible text Is it not apparent that if the same process is applied to the cypher letters of the indzudual alphabets of the cipher just solved that the plaintext equivalents of these letters must all reappear on one and the same generatrix? But how will the generatrix which actually contans the plan-text letters be distingushable from the other generatrices, since these plan-text letters are not consecutive letters in the plain text but only letters separated from one another by a constant interval? The answer is simple The plaintext generatrix should be distingushable from the others because at will show more and a better assortment of hegh-frequency letters, and can thus be selected by the eye from the whole set of generatrices If this is done with all the alphabets in the cryptogram, it will merely be necessary to assemble the letters of the thus selected generatrices in proper order, and the result sould be onsecutive letters forming intelligible text
c An example will serve to make the process clear Let the same message be used as before Factoring showed that it involves five alphabets Let the first ten cipher letters in each alphabet be set down in a horizontal line and let the normal alphabet sequences be completed Thus

20
Alprabet 1
1 AJZUNEZAI
2 BKAKOFABJK
3 CLBLPGBCKL
4 DMCMQHCDLM
5 ENDNRIDEMN
7 GPFPTKFGOP
8 HQGQULGHPQ
9 IRHRVNHTQR
10 JSISWNIJRS
11 KTJTXOJKST
12 LUKUYPKLTU
13 MVLVZQLMUV
14 NWMWARMNVW
15 OXNXBSNOWX
16 PYOYCTOPXY
17 QZPZDUPQYZ
18 RAQAEVQRZA
19 SBRBFWRSAB
20 TCSCGXSTBC
21 UDTDHYTUCD
22 VeUEIZUVDE
23 WFVFJAVWEF
24 XGwGKBwXFG
5 YHXHLCXYGH
26 ZIYIMDYZHI

Аарнаввт 2 AYMFTHYLK VBZNGUIZML WCAOHVJANM
XDBPIWKBON XDBPIWKBON YECQJXLCPO ZFDRKYMDQP AGESLZNERQ BHFTMAOFSR CIGUNBPGTS
D.JHYOCQHUT EKTwPDRTVU FLJXQESJWV GMKYRFTKXW GMKYRFTKXW HNLZSGULYX IOMATHVMZY JPNBUIWNAZ KQOCVJXORA MSQEXLZQDC NTRFYMARED OUSGZNBSFE PVTHAOCTGF QWUIBPDUHG RXVJCQEVIH SYWKDRFWJI TZXLESGXKJ

аденнивет 3
KMMIMIBMVU LNNJNJCNWV MOOKOKDOXW NPPL_PLEPYX OQQMQMFQZY PRRNRNGRAZ QSSJSOHSBA RTTPTPITCB SUUQUQUUDC TVVRVRKVFD UWWSWSLLFE
VXXTXTMXCF VXXTXTMXGF
WYYUYUIYHG WYYUYU JYig XZZVZVOZIH
YAAWAWPAJI YAAWAWPAJI
ZBByEXGBKJ ACCYCYRCLK ADDZCYRSDML CEEAEATENN DFFBFBUFON DFFBFBUFON EGGCGCVGPO FHHDHDWHOP GTIEIEXIRQ
HJJFJFYJSR IKKCKGEKTS JLLHLHALUT Figedra 3
\qquad $\stackrel{\text { Alpfiaber } 4}{4}$ Alpasbris ILXHMNIANU ZJMXYIRMEG JMYINOJBOV AKCZZKTOGI KNZJOPKCPW ALCZALUPGI LOAKPGLDQX CMQBBMVOIK MPBLQRMERY DNRCCNWRJL NQCMRSNFSZ EOSDDOXSKM ORDNSTOGTA FPTEEPYTLN PSEOTUPHUB GQUFFQZUMO QTFPUVQIVC HRVGGRAVNP RUGQVWRJWD ISWHHSBWOQ SVHRWXSKXE JTXIITCXPR TWISXYTLYF KUYJJUDYQS UXJTYZUMZG LVZKKVEZRT VYKUZAVNAH MWALLWFASU XZLVABWOBI NXBMMXGBTV YBNXCDYQDK OYCNNYHCUW ZCOYDEZREL PZDOOZIDVX ADPZEFASFM QAEPPAJEWY $\begin{array}{ll}\text { ADPLEFASFM } & \text { RBFQQBKFXZ } \\ \text { BEQAFGBTGN } & \text { SCGRRCLGYA }\end{array}$ CFRCGHCUHO TDHRSDDMZB $\begin{array}{ll}\text { CFRCGHCUHO } & \text { TDHSSDMHZB } \\ \text { DESCHIDJIIP } & \\ \text { UEITTENIAC }\end{array}$ EHTDIJEWJQ VEITTENIAC ERTDIJEWJQ VFJUUFOJBD GJVFKLGYLS XHLWWHQLDF
d If the high-frequency generatrices underlined in Figure 3 are selected and their letters ate juxtaposed in columns the consecutive letters of intelligible plain text immediately present
themselves Thus

21

Plain text ENCOUNTERED RED INFANTRY ESTIMATED AT ONE REGIMENT AND MAC

e Solution by this method can thus be achieved without the complation of any frequency tables whatever and is very quickly a.ttaned The inexperienced cryptanalyst may have diffculty at first in selecting the generatrices which contan the most and the best assortment o
high-frequency letters, but with increased practice, a high degree of prof ciency is attained high-frequency letters, but with increased practice, a high degree of prol ciency is attaned generatrices so as to produce intelligible text
f If the letters on the shding strips were accompanied by numbers representing ther relative frequencies in plan text, and these numbers were added across each generatiux, then that generatrix with the highest total frequency world theoretically always be the plain-text generatrix Practically it will be among the generatrices which show the first three or four greatest totals Thus, an entirely mathematical solution for thas type of capher may be applied
g If the cipher alphabets are reversed standard alphabets, it is only necessary to conver the cupher letters of each isolated alphabet into their normal, plam-component cquvalents and then proceed as in the case of dircct standard alphabets
h It has been seen how the key nord may be discovered in this type of cryptogram Usually the key is made up of those letters in the successive alphabets whose equivalents are A_{p} but other conventions are of course possible Sometimes a key number is used, such as $8-4-7-1-12$, which means merely that A_{p} is represented by the elghth letter from A (in the normal alphabet) in the first cipher alphabet, by the fourth letter from A in the second cipher alphabet, and so on This modification is known in the literature as the Gronsfeld copher However, the method of solution as allustrated above, being independent of the nature of the key, is the same as before

15 Solution by the "probable-word method $-a$ The common use of key words in crypwhere the more detaled method of analysis using fiequency distributions or by completing the plain-component sequence is of no aval In the case of a very short message which may show orecurrences and give no ind method will be found most useful
b Brefly, the method consists in assuming the presence of a probable word in the message and referring to the alphabets to find the key lettes applicable when this hypothetical word is assumed to be present in various positions in the cipher text If the assumed word happens to assumed to be present in various positions in the cipher text if the assumed word happens to
be correct, and is placed in the correct position in the message, the key letters produced by referring to the alphabets will yield the key word In the following example it is assumed that reversed standard alphabets are known to be used by the enemy

Message

MDSTJ LQCXC KZASA NYYKO LP
c Extraneous circumstances lead to the assumption of the presence of the word AMMUNITION One may assume that this word begins the message Using sliding normal components, one reversed, the other direct, the key letters are ascertaned by noting what the successive equivalents of A_{p} are Thus

Plann text \qquad AMMUNITION "Key" \qquad MPENWTJKLP	

The key does not spell any intelligible word forward and another trial is made

Cipher Plan te

This also yelds no intelligible key word One contanues to shift the assumed word forward one space at a time until the following point is reached
Clpher-
Plam tex
QCXCKZASA
"Key"--
LCORPSSIGN

The key now becomes evident It is a cyche permutation of SIGNAL CORPS It should be clear that sunce the key word or key phrase repeats itself during the encipherment of such a message, the plain-text word upon whose assi med presence in the message this test is being tion if it is longer than the key When this is the case it is merely ne over into its next repetition if it is longer than the key When this is the case it is merelv necessary to shift the latter part of the sequence of key letters to the first part, as in the case noted LCORPSSIGN is trans LCORPS, and thus SIGNAL CORPS
d It will be seen in the foregoing method of solution that the length of the key is of no particular interest or consequence in the steps tahen in effecting the solution The determindcase the length of the period is seen to be eleven, corresponding to the length of the hey (SIGNAL CORPS
e The foregoing method is one of the other methods of determinng the length of the key (besides factoring), referred to in Par $10 c$
f If the assumption of reversed standard alphabets yields no good results, then direct standard alphabets are assumed and the test made exactly in the same manner As will be shown subsequently, the method can also be used as a last resort when mixed alphabets are employed
g When the assumed word is longer than the key, the sequence of recovered key letters will show a periodicity equal to the length of the key, that is, after a certain number of letters the sequence of key letters will repeat This phenomenon would be most useful in the case of key that are not intelligible words but are composed of random letters or figures Of course, if such a key is longer than the assumed word, this method is of no aval
h This method of solution by searching for a word is contingent upon the following carcumstances
(1) That the word whose presence is assumed actually occurs in the message, is properly spelled, and correctly encuphered
(2) That the sliding components (or equivalent cipher disks or squares) employed in the search for the assumed word are actually the ones which weie employed in the encipherment are such as to give identical results as the ones which were actually used
(3) That the par of encipheing equations used in the test is actually the pail which was employed in the encipherment, or if a cipher square is used in the test, the method of finding (See par 9)

23
${ }^{2}$ The foregoing appears to be quite an array of contingencies and the student may think that on this account the method will often fall But examining these contingencies one by one, it will be seen that successful application of the method may not be at all rare-after the solution favored by the enemy From the foregoing remark it is to be inferred that the probable-word method has its greatest usefulness not in an inital solution of a system, but only after succesaful metudy of enemy communications by more defficult processes of analysis has told 1ts story to the study of enemy communcations by more dufficult processes of analysis has told its story to the alert cryptanalyst Although it is commonly attributed to Bazeries, the French cryptanalyst
of 1900, the probable-word method is very old in cryptanalysis and goes back several centuries Its usefulness in practical work may best be indicated by quoting from a competent observer ${ }^{1}$
There is another [method] which is to this first method what the geometric method is to analysis in certain There 18 another [method] which is to this first method what the geometric method is to analysis in certain
sciences, and, according to the whims of indviduals, certain cryptanalysts prefer one to the other Certain others, sclences, and, accordng to the whims of individuals, certain cryptanalysts prefer one to the other Certann others,
nocapable of getting the answer with one of the method sin the solution of a d difficult problem, conquer it by means of the other, with a disconcerting masterly stroke Thas other method 18 that of the piobable word We may have more or less definite opmnions concerning the subject of the cryptogram We may know something about 1 ts date, and the correspondents, who may have been indiscreet in the subject they have treated On this basis, the
In certain classes of documents, mplitary or diplomatic telegrams, banking and minng affairs, ete, it is not mposssble to make very importan assumptions about the presence of certain words in the text After a cryptanalyst has worked for a long time with the writings of certain correspondents, he gets used to their expressions He gets a whole load of words to try out, then the changes of hey, and sometimes of system, no longer throw into his war the difficulties of an to try out, then the changes of hey, and sometimes of system, no
absolutely new study, which might require the analvtical method

Givierge, M , Cours de Cryptographee, Paris, 1925, p 30

Stction V

REPEATING-KEY SYSTEMS WITH MIXED CIPHER ALPHABETS, I

Abstract

Princuples of dred alphabets Principles of direct symmetry of position nitial steps in the solution of a typical erample Application of principles of direct symmetry of position.- Subsequent steps in solution.-- Completing the solution. Solution of subsequent messages enciphered by same cupher component ummation of relative frequencies as an ald to the selection of the corre Solution when plan componeut is mixed, the cupher component, the normal.

16. Reason for the use of mixed alphabets - It he- -- -thus far that the use of several alphabets in the same message sees no analysis of such a cryptogram There are three reasons why this is so greatly comphcato the few alphabets were employed, secondly, these alphabets were cmployed in a perioding relatively manner, givng rise to cychic phenomena in the cryptociam, by means of which the number alphabets could be determined, and, thirdlv, the cipher culphabets were lenown alphebets by which is meant merely that the sequences of letters in toth components of the cipher alphabets were known sequences
b In the case of monoalphabetic ciphers it x as found that the use of a mixed alphabet delayed the solution to a consideral)le degice, and it will now be seen that the use of muxed alphabets in polyalphabetic ciphers renders the analysis much more dufficult than the use of standard alphabets, but the solution is still faurly easy to achieve

17 Interrelated muxed alphabets - a It was stated in Par 5 that the method of producing in the analysis of tha are interrelated sen are interrelated secondary alphabets produced by sliding components or their equivalents Reference is now made to the classification set forth in Par 6, in connection with the types of only Cases A (1) and (2) have been treated Case B (1) will now be discussed
b Here one of the components, the plan component
cipher component is a mixed sequence, the various juxtapositions of the two sequence, while the muxed alphabets The muxed component may be a systematically-muxed or a rand ymang sequence If the 25 successive displacements of the mixed component are recorded in separato ines, a symmetrical ciphor squal in form with the square table shown on p 7, labeled Table I-A
(1) Plain.
(2) Plain LEAVNWORTHBCDFGIJKMPQSUXYZ AVNWORTHBCDFGIJKMPQSUXYZI VNWORTHBCDFGIJKMPQSUXYZLEA
 WORTHBCDFGIJKMMPQSUXYZLEAVN ORTHBCDFGIJKMPQSUXYZLEAVN RTHBCDFGIJKMPQSUXYZLEAVNWO THBCDFGIJKMPQSUXYZLEAVNWOR HBCDFGIJKMPQSUXYZLEAVNWORT BCDFGIJKMPQSUXYZLEAVNWORTH CDFGIJKMPQSUXYZLEAVNWORTHB DFGIJKMPQSUXYZLEAVNWORTHBC FGIJKMPQSUXYZLEAVNWORTHBCD GIJKMPQSUXYZLEAVNWORTHBCDF IJKMPQSUXYZLEAVNWORTHBCDFG KMPQSUXYZLEAVNWORTHBCDFGIJ MPQSUXYZLEAVNWORTHBCDFGTJK PQ QUXYZLEAVNWORTHBCDFGTJKM PQSUXYZLEAVNWORTHBCDFGIJKM
QSUXYZEAVNWORTHBCDFGIJKMP QSUXYZLEAVNWORTHBCDFGIJKMP
SUXYZLEAVNWORTHBCDFGIJKMPQ UXYZLEAVNWORTHBCDFGIJKMPQS XYZLEAVNWORTHBCDFGIJKMPQSU
 fledre 5
c Such a clpher square may be used in exactly the same manner as the Vigenère square With the key word BLUE and conforming to the normal enciphering equations ($\theta_{\Sigma_{1} / 2}=\theta_{1 / 1}, \theta_{D / 2}=$ $\theta_{\mathrm{c} / 2}$), the following lines of the square would be used

ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDFGIJKMPQSUXYZLEAVNWORTH
LEAYNKARTHBCDFGIJKMPQSUXYZ
EAVNWERTHBCDFGIJKMPQSUXYZL
These lines would, of course, yyeld the following cipher alphabets
\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
\qquad B
Cipher
(3) Plain
\qquad EAVNFGHIJKLMNOPQRSTUVWXYZ
\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ UXYZLEAVNWORTHBCDFGIJKMPQS
\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cupher. EAVNWORTHBCDFGIJKMPQSUXYZL

18 Principles of direct symmetry of position - a It was stated directly above that Fig 5 is a symmetical cipher square, by which is meant that the letters in its successive horizontal lines show a symmetry of position with respect to one another They consitute, in reality, one and only one sequence or series of letters, the sequences being merely displaced surcessively 1 2, 3, intervals The symmetry exhibited is obvious and is said to be visible, or direct This fact can be used to good advantage, as has alicady been alluded to in par 73
b Consider, for example, the pair of letters G_{a} and V_{0} in cipher alphabet (1) of $F_{l y} 6 b$ The letter V_{o} is the 15 th letter to the right of G_{o} In cipher alphabet (2), $V_{0} 1 s$ also the 15 th letter to the right of G_{o}, as is the case in each of the four cipher alphabets in $\mathrm{F}^{\prime} \mathrm{g}$ 6b, since the relative positions they occupy are the same in each horizontal line in Fig 6a, that is, in each of the successive recordungs of the cipher component as the I tter is shd to the right aganst the plain or normal component If, therefore, the relative positions occupied by two letters, θ_{1} and θ_{2}, in such a cipher alphabet, C_{1}, are known, and if the position of θ_{1} in another cipher alphabet, C_{2}
 the following values in four cipher alphabets have been tentatively determined

Plon------- $A B C D E G H I J K L N O P Q R S$

c The cupher components of these four secondary alphabets may, for convemence, be assembled into a cellular structure, herenafter called a sequence reconstruction skeleton, as shown in Fig 7b Regarding the top line of the reconstruction skeleton in Fig $7 b$ as being common to all four secondary cupher alphabets histed in Fig 7a, the successive lines of the reconstruction skeleton may now be termed capher alphabets, and may be referred to by the numbers at the left

Ficuma 7b
d The letter G is common to Alphat 1 and 2 In 1 the 10th position to the left of G, and the letter P occupies the 5 th position to the right of G the 10th position th the left of G, and the letter P occupies the 5th position to the right of G
One may therefore place these letters, N and P, in their proper positions in Alphabet 1 , the letter N One may thercfore place these letters, N and P, in their proper positions in
being placed 10 letters before G, and the letier $P, 5$ lettors after G Thus

Thus, the values of two new letters in Alphabet $1, v i z, P_{0}=J_{p}$, and $N_{0}=U_{p}$ have been automatically determined, these values were obtained without any anulyss based upon the frequency of P_{c} and $N_{0} \quad$ Lukewise, in Alphabet 2, the letters Y and V may be inserted in these positions Plam
 2

This gives the new values $V_{c}=D_{p}$ and $Y_{c}=Y_{D}$ in Alphabet 2 Alphabets 3 and 4 have a common letter I, which permits of the plac ement of Q and W in Alphabet 3, and of B and L in Alplabet 4
e The new values thus found are of couse immedrately inserted thoughout the ciyptogram, thus leading to the assumption of further values no reconstruction of the primary components, by the apphcation of the pto iph hestens colution of position to the cells of the reconstruction skeleton, thus facilitates and hestens solntion
f It must be clealy understood that before the pinciples of direct sinmetry of position can be apphed in cases such ine normal sequence or not is immatenal, so long as the sequence is sequence Obvously if the sequence is unknown, symmetry, even if present, cannot be detected by the cryptanalyst because he has no base upon which to try out has assumptions for symmetry In other words, durect symmetry of position is manifested in the illustrative example because the plan component is a known sequence, and not because it is the normal alphabet The significance of this point will become apparent later on in connection with the problem discussed in Par 266
19 Intial steps in the solution of a typical example - $-a$ In the light of the foregong principles let a typical message now be studied

			Mrssage		
A	QWBRI	VWY C A	I S P J L	R B Z E Y	Y E U
B	W	I C	MTZEI	M I BKN	QWBRI
C	VWY I G	B W N B Q	Q C G Q H	IW J K A	GEGXN
D	IDMRU	VE Z Y G	QIGVN	C T GY	B
E	VCGXG	B K Z	IV XCU	NTZA	BWFE
F	QLFCO	MTYZT	C C B Y Q	0	G D G I G
G	V PWMR	QIIEW	I C C X G	B L G Q Q	VBGR
H	MYJ J Y	Q VFWY	R W	G X N F	M C J K X
J	IDDRU	OPJQQ	Z	V	R D G D G
K	BXDBN	PXFPU	Y X NEF	MPJEL	SANCD
L	SEZZG	I BEYU	K DHCA	M B J	K L L C J
M	MFDZT	C TJRD	M 1 Y ZQ	ACJR	S B G Z
N	QYAHQ	VEDCQ	LXNCL	LVVCS	QWBI
P	IVJRN	WNBR	V PJEL	TAGDN	G
Q	ATYEW	C B Y ZT	EVGQU	V P Y H	Z N Q
R	A	IKW J Q	RD Z Y F	Z L	WFJQ
	Q	I B W R X			

b The principal repetitions of three or more letters have been underlined in the message and the factors (up to 20 only) of the intervals between them are as follows

QWBRIVWY

CGXGB..- .--	$\mathbf{6 0}=2,3,4,5,6,10,12,15,20$
PJEL - .---	$95=5,19$
ZZGI ------	$145=5$
BRIV-- -----	$285=3,5,15,19$
BRI .- ---	$45=3,5,9,15$
KAG-.	$75=3,5,15$
QRD	$165=3,5,15$
QWB .- - --	$45=3,5,9,15$
QWB --- ---	$275=5,11$
WIC.	$130=2,5,10,13$
XNF.	$45=3,5,9,15$
YZT	$225=3,5,15$
ZTC. . .-.	$145=3,5$

The factor 5 is common to all of these repetitions, and there seems to be evely mdication that five alphabets are involved Since the message already appears in groups of five letters, it is unnecessary in this case to rewrite it in groups corresponding to the length of the key The uminteral frequency distribution for Alphabet 1 is as follows
c Attempts to fit this distribution to the normal on the basis of a duect or reversed standard alphabet do not give positive results, and it is assumed that mixed alphabets are standard Individual trihteral frequency distributions are then compled and are shown in Fig 9 These tables are simular to those made for single mixed alphabet ciphers, and are made in the same way except that instead of taking the letters one after the other, the letters which belong to the separate alphabets now must be assembled in separate tables Fol example, in Alphabet 1 , the tigraph QAC means that A occurs in Alphabet 1, Q, its prefix, occurs in Alphabet 5, and C, its suffix, occurs in Alphabet 2 All confusion may be avoided by placing numbers indicating the alphabets in which they belong above the letters, thus QAC^{512}

Alpfabet 1

Alpfabet 1														
A B C	D E	F G	H I	J K	L	M	N 0 P	Q	Q R	S	T	U V	v	T X Y Z
QC GW NT	TV	${ }_{\text {AE }}$	AS	UD	UW	IT	UT QP NX	X-W	W LB	3 LA	LA	IW	TW	QI UX QR
PT OP TC		AD	wc	FI	QX	II	UP	YW	W YW	DE			IW	
GK TT		Lx	HW		Lv	OT			WD	RB			E	
OW WB		LW	ND		LR	SY			C QD				c	
GL			GV			wC		GI					GP	
GX			wc			GP		QL	L				Q	
			xD			AB		RI					WW	
			GB			JF		Yv					E	
			IV			DI		NY					P	
			NR					SW					Pr	
			${ }_{\text {AK }}^{\text {AK }}$					QW	W					

Alpabbet 2

Alphabet 3

Aiphabet 4

30
Alpeabat 5

Condensed table of repetitions
$1-2-3-4-5-1-2-3$
QWBRIV F Y-2
$2-3-4-5-1$
$C G B G B$
$\stackrel{2-3-4-1}{P}$
$3-4-5-1$
$B-R-I-V$
$\mathrm{B}-\mathrm{R}-\mathrm{I}-\mathrm{V}$
$\mathrm{Z}-\mathrm{G}-\mathrm{G}-\mathrm{I}-2$

rosa
d One now proceeds to analyze each alphabet distribution, in an endeavor to establish dentufications of cipher equivalents First, of cousse, attempts should be made to separate the vowels from the consonants in each alphabet, using the same test as in the case of a sing the vowels from the consonants in each the le no doubt about the equivalent of E_{p} in each alphabet
e The letters of greatest frequency in Alphabet 1 are $I, M, Q, V, B, G, L, R, S$, and $C \quad I_{0}$ has already been assumed to be E_{p} If \dot{W}_{e} and $\stackrel{5}{Q}_{\mathrm{e}}=E_{\mathrm{p}}$, then one should be able to distingush the vowels from the consonurits among the letters M, Q, V, B, G, L, R, S, and C by exammeng the prefixes of $\stackrel{2}{W}_{c}$, and the suffixes of $\stackrel{5}{Q}_{\text {c }}$ The prefixes and suffixes of these letters, as shown by the triliteral frequency distributions, are these
f Consider now the letter $\stackrel{1}{M_{c}}$, it docs not occur either as a prefix of $\stackrel{2}{W_{0}}$, or as a suffix of $\stackrel{5}{Q_{0}}$ Hence it is most probably a vowel, and on account of its high frequency it may be assumed to be O_{D} On the other hand, note that Q_{D} occurs five times as a piefix of W_{0} and three times as a suffix of ${ }^{5} Q_{0}$ It is therefore a consonant, most probably R_{p}, for it would give the dygraph $\mathrm{ER}\left(=Q Q_{\mathrm{c}}\right)$ as occurring three times and $\operatorname{RE}\left(=Q W_{\mathrm{c}}\right)$ as occurring five times
g The letter $\stackrel{1}{V}_{0}$ occurs three times as a prefix of $\stackrel{2}{W}_{0}$ and twice as a suffix of $\stackrel{s}{q}_{0}$ It is therefore a consonant, and on account of its frequency, let it be assumed to be T_{D} The letter B_{0}^{1} occurs twice as a prefix of ${ }_{W}{ }_{c}$ but not as a suffix of $\dot{Q}_{\text {a }}$. Its frequency is only medium, and it is probably a consonant In fuct, the twice repeated digiaph $B W_{0}$ is once a part of the trigraph ${ }_{G B W}{ }^{12}$, and \dot{G}_{c}, the letter of second highest frequency in Alphabet 5, looks excellent for T_{D} Mught not the trigraph GBW be THE? It will be well to keep this possiblity in mind
 be a vowel, but one can not be sure The letter $\frac{1}{L_{0}}$ occurs once as a prefix of ${\underset{W}{c}}^{2}$ and once as a suffix of $\stackrel{5}{Q}^{\circ}$ It may be considered to be a consonant $\quad \stackrel{1}{R_{e}}$ occurs once as a prefix of $\stackrel{2}{W_{e}}$, and twice as a suffix of $\stackrel{\delta}{Q}_{0}$, and is certainly a consonant Nerther the letter $\stackrel{1}{S}_{\mathbf{S}}$ nor the letter ${ }^{\mathrm{C}}$ 。 occurs as a prefix of $\stackrel{2}{W}_{c}$ or as a suffic of $\stackrel{5}{Q}_{\text {a }}$, both would seem to be vowels, but a study of the prefixes and
 vowel For all the prefixes of $C, v i z, \stackrel{5}{N}, \frac{5}{T}$, and $\stackrel{5}{W}$, are in subsequent analysis of Alphabet 5 classified as consonants, as are likevise its suffives, viz, T, C, and B in Alphabet 2 On the other hand, only one prefir, $\stackrel{5}{L}_{\mathrm{L}}$, and one suffix, $\stackrel{2}{\mathrm{~B}}_{\mathrm{e}}$, of $\stackrel{1}{S_{\mathrm{c}}}$ are later classined as consonants Since vowels are
more often associated with consonants than with other vowels, it would seem that ${ }_{\mathbf{C}}^{\mathbf{C}}{ }_{\mathrm{c}}$ is more
 unclasssfied
i Going through the same steps with the remaining alphabets, the following results are obtaned

Alphabet	Consonnts	Vowels
1	Q, V, B, L, R, GP	I, M, C
2	B, C, D, T	W, P, I
3	J, N, D, Y, F	G, Z
4 5		$\begin{aligned} & \text { C. ER, R?, B? } \\ & \text { Q. U } \end{aligned}$

20 Application of principles of direct symmetry of position - a The next step is to try to determine a few values in each alphabet In Alphabet 1, from the foregoing analysis, the following data are on hand

$$
\begin{aligned}
& \text { Cipher-------- }{ }^{\circ}{ }^{7} \\
& \text { I CQ MLM } \mathrm{C}_{\mathrm{Q}}
\end{aligned}
$$

Let the values of E_{D} already assumed in the remaning alphabets, be set down in a reconstruction skeleton, as follows

$$
\text { Ftaures } 10
$$

b It is seen that by good fortune the letter Q is common to Alphabets 1 and 5 , and the letter C is common to Aiphabets 1 and 4 If it is assumed that one is dealing with a case in which a muxed component is sldung aganst the normal component, one can apply the principles of durect symmetry of position to these alphabets, as outluned in Par 18 For example, one may insert the following values in Alphabet 5

c The process at once gives three definite values $\stackrel{5}{M_{0}}=B_{p}, \stackrel{5}{V}=G_{p}, \stackrel{5}{I}_{0}=R_{p} \quad$ Let these deduced values be substantiated by referring to the frequency distribution Since B and G are normally low or medum frequency letters in plan text, one should find that M_{c} and V_{0}, their hypothetical equivalents in Alphabet 5 , should have low frequencies As a matter of fact, they do not appear in this alphabet, which thus far corroborates the assumption On the other hand, since ${ }^{5} I_{a}=R_{p}$, if the values derived from symmetry of position are correct, ${ }^{5} I_{d}$ should be of high frequency, and reference to the distribution shows that I_{c} is of high frequency The position of C_{5} is doubtful, it belongs either under N_{D} or V_{D}. If the former is correct, then the frequency of C_{o} should be high, for it would equal N_{D}, if the latter is correct, then its frequency should be low, for it would equal V_{0} As a matter of fact, $\stackrel{5}{c}_{6}$ does not occur, and it must be concluded that it belongs under V_{D} This in turn settles the value of $\stackrel{1}{C}_{c}$, for it must now be placed defintely under I_{p} and removed from beneath A_{p}
d The definte placement of C now permits the insertion of new values in Alphabet 4, and one now has the following
Plann.-

Plam.- ---------		B	C	D E	E	F	G H	I	I	K	K	M	N	0	P			S	I	-	V			
(1--- ---				I					c					M			Q		V					
				W	N																			
Clpher 3---------					G																			
	I			c	c					M	M		Q		V									
(5------- -		M		Q	Q	V	v										I				c			

Figuse 12
21 Subsequent steps in solution - a It is high time that the thus far deduced values, as lecorded in the reconstruction skeleton, be inserted in the crphei text, for by this time it must seem that the analysis has certannly gone too far upon unproved hypotheses The following results are obtanned

			GE		
A	$\begin{aligned} & Q W{ }^{1} \text { R I } \\ & \text { RE } \quad \text { R } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \mathrm{~W}^{2} \mathrm{Y} C \mathrm{~A} \\ & \mathrm{TE} \mathrm{E} \end{aligned}$		R B Z E Y	
B	$\mathrm{L} \underset{\mathrm{E}}{\mathrm{~W}} \mathrm{M} \text { G W }$	$\begin{aligned} & \text { I CJ C I } \\ & \mathrm{E} \\ & \mathrm{ER} \end{aligned}$	$\begin{gathered} \text { MTEE I } \\ 0 \end{gathered}$	$\begin{aligned} & \text { M I B K N } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Q W B R I } \\ & \text { REE } \quad \text { R } \\ & \hline \end{aligned}$
C	$\begin{aligned} & \text { V W Y I G } \\ & \text { TE E A } \end{aligned}$	$\begin{array}{cc} B W N B \\ E & Q \\ \hline \end{array}$	$\begin{aligned} & \text { QCGQ G } H \\ & R \quad E N \end{aligned}$	$\begin{aligned} & \text { I W J K A } \\ & \text { E E } \end{aligned}$	$\operatorname{GES}_{\mathrm{E}}^{\mathrm{G} X N}$

D	I DMRU	$\begin{aligned} & \text { VE Z Y G } \\ & \text { T } \end{aligned}$	$\begin{aligned} & \text { Q I GVN } \\ & \text { R EP } \end{aligned}$		B P D B L
E	$\begin{aligned} & \mathrm{V} C \mathrm{CXX} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	B K Z Z G	$\underset{E}{\text { I V X X }} \underset{\mathrm{E}}{\mathrm{C}}$	N T Z A 0	$\underset{E}{\text { B }} \underset{\mathrm{E}}{\mathrm{~F}} \underset{\mathrm{E}}{\mathrm{Q}}$
F	$\begin{aligned} & \text { Q L F C } \\ & \mathrm{R} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { M T Y Z T } \\ & 0 \end{aligned}$	$\begin{array}{cccc} \text { C C B } \\ \text { I } & & \text { Q } \\ \hline \end{array}$	O P D K A	$\text { G D G } \underset{E A}{ } \mathrm{I}_{\mathrm{A}} \mathrm{G}$
G	$\underset{T}{V} \underset{K}{V_{K}}$	$\begin{aligned} & \text { Q I I E W } \\ & R \end{aligned}$	$\underset{E}{\text { I C G X G }}$	$\begin{array}{r} B L G Q Q \\ E N E \end{array}$	$\begin{aligned} & \text { V B GR S } \\ & \text { T } \quad \text { E } \end{aligned}$
H	$\begin{aligned} & \text { M Y J J Y } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Q V F W Y } \\ & R \end{aligned}$	$\underset{\mathrm{E}}{\mathrm{R}} \underset{\mathrm{~W}}{\mathrm{~N}} \mathrm{~F} \mathrm{~L}$	G X N F W	$\begin{aligned} & \text { M C J K X } \\ & 0 \end{aligned}$
J	IDDRU	$\begin{array}{r} 0 \text { P J Q Q } \\ \mathrm{N} E \end{array}$	$\text { Z R H } \underset{\mathrm{E}}{\mathrm{C}} \mathrm{~N}$	$\begin{array}{ll} \text { V W D Y Q } \\ \text { T E } & \text { E } \end{array}$	$\underset{\mathrm{E}}{\mathrm{RD}} \mathrm{G}$
K	B X D B N	P X F P U	Y X N F G	$\begin{aligned} & \text { M P J E L } \\ & 0 \end{aligned}$	$\underset{E}{S A N}$
L	S E Z Z G	$\begin{aligned} & \text { I B E Y U } \\ & \text { E } \end{aligned}$	$\text { K D } \underset{E}{\mathrm{C}} \mathrm{~A}$	$\underset{0}{M} \operatorname{B} J \text { J F }$	$\text { K I L } \underset{\mathrm{E}}{\mathrm{C}}$
M	$\underset{0}{\text { M F D Z T }}$	$\underset{\mathrm{I}}{\mathrm{C}} \mathrm{~T} \text { JRD }$	$\begin{array}{cc} \text { M I Y Z } \\ 0 & \text { E } \end{array}$	A C J R R	$\underset{\mathrm{E}}{\mathrm{~S}} \mathrm{~B} \operatorname{Gin}$
N	$\begin{array}{ll} \text { Q Y A H } \\ \mathrm{R} & \mathrm{E} \end{array}$	$\begin{array}{ccc} V E & \text { C Q } \\ T & \text { E E } \end{array}$	$\underset{\mathrm{E}}{\mathrm{~L} X \mathrm{X}} \mathrm{C}$	$\mathrm{L} V \mathrm{~V} \underset{\mathrm{E}}{\mathrm{C}}$	$\begin{aligned} & \text { Q W B I I } \\ & R E \quad A R \\ & \hline \end{aligned}$
P	$\begin{aligned} & \text { I V J R N } \\ & \underline{\text { E }} \end{aligned}$	$\begin{array}{r} \text { W N B R I } \\ R \end{array}$	$\begin{aligned} & \text { V P J E L } \\ & T \end{aligned}$	$\underset{E}{T A G N}$	$\begin{aligned} & \text { I R G Q P } \\ & \mathrm{E} \text { E N } \end{aligned}$
Q	A TYE W	$\begin{aligned} & \text { C B Y Z T } \\ & \text { I } \end{aligned}$	EVGQU	$\begin{aligned} & \text { V P Y H L } \\ & \text { T } \end{aligned}$	$\begin{array}{r} \mathrm{L} R \mathrm{ZN} \mathrm{Q} \\ \mathrm{E} \end{array}$
R	X I N B A	$\begin{array}{ll} \text { I K W J Q } \\ \text { E } \end{array}$	R D Y Y F	$\underset{E}{\text { K }} \underset{\mathrm{E}}{\mathrm{~F}} \mathrm{Z} \mathrm{~L}$	$\underset{E}{G} \underset{E}{W} \underset{E}{\text { F }}$
S	$\begin{array}{ll} \text { Q W J Y Q } \\ \text { REE } & \text { E } \end{array}$	$\underset{\mathrm{E}}{\mathrm{I}} \mathrm{BWRX}$			

b The combinations given are excellent throughout and no mconsistencies appear Note the trigraph $Q^{123} \mathbb{B} B$, which is repeated in the following polygraphs (underined in the foregoing text)

$$
\begin{aligned}
& \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 1 \\
Q & W & B & R & I & V \\
R & E & & & R & T
\end{array} \\
& \begin{array}{ccccccc}
5 & 1 & 2 & 3 & A & B & 1 \\
S & Q & W & B & I & I & I \\
& R & E & & A & R & E
\end{array}
\end{aligned}
$$

c The letter $\stackrel{3}{B}^{B_{0}}$ is common to both polygraphs, and a little imagnation will lead to the assumption of the value ${ }^{3}{ }_{c}=P_{p}$, yielding the following

$$
\begin{array}{lllllllllllll}
1 & 2 & 8 & 4 & 5 & 1 & & 5 & 1 & 2 & 3 & 4 & 5 \\
Q & W & B & R & T & V & S & Q & W & B & I & I & I \\
R & E & P & 0 & R & T & P & R & E & P & A & R & E
\end{array}
$$

d Note also (in F5) the polygraph $\underset{A}{\frac{4}{I}} \underset{\mathrm{G}}{\mathrm{s}} \underset{\mathrm{T}}{1} \stackrel{2}{\mathrm{P}} \underset{\mathrm{K}}{\frac{3}{\mathrm{M}}} \underset{\mathrm{K}}{4}$, which looks like the word ATTACK The frequency distributions are consulted to see whether the frequencies given for $\stackrel{5}{G}_{5}$ and ${ }_{P}^{2}{ }^{2}$ are high enough for T_{D} and A_{p}, respectively, and also whether the frequency of ${ }_{W_{0}}{ }^{3}$ is good enough for C_{p}, it is noted that they are excellent Moreover, the digraph ${ }^{51}{ }_{\mathrm{GB}}^{6}$, which occurs four times, looks like $T H$, thus making $B_{0}=H_{p}$ Does the insertion of these four new values in our diagram of
 no indications either way, since nether letter has yet been located in any of the other alphabets
 $G_{0}=E_{p}$ was assumed long ago Unfortunately an meonsistency is found here The letter I has been placed two letters to the left of \mathbf{G} in the mixed component, and has given good result in Alphabets 1 and 5 , if the value $\stackrel{3}{W}_{\mathrm{D}}=\mathrm{C}_{\mathrm{p}}$ (obtaned above from the assumption of the word TTTACK) is coriect, then W, and not I, should be the second letter to the left of G Which shal be retained? There has been so far nothing to establish the value of ${ }_{\mathrm{G}}^{\mathrm{c}} \mathrm{c}=\mathrm{E}_{\mathrm{p}}$, this value was assumed from frequency considerations solely Perhaps it is wrong It certanly behaves lik a vowel, and one may see what happens when one changes its value to O_{p} The follown lacements in the reconstruction skeleton result from values have been added as a result of the clues afforded by the deductions

e Many new values are produced, and these are inserted throughout the message, yrelding the following

A	$\begin{array}{lllll} & & 1 & \\ \text { Q W B R I } \\ \text { REFP } \end{array}$			$$	
B	$\begin{aligned} & \text { L W M G } \\ & \text { E W } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { I C J C I } \\ & \text { ES E R } \end{aligned}$	$\begin{array}{ccc} \text { M T Z E I } \\ 0 & \text { R } \end{array}$	$\begin{aligned} & \text { M I B K N } \\ & 0 \text { O P } \end{aligned}$	$\begin{array}{lllll} Q W B & I \\ \text { R E P O } \end{array}$
C	$\begin{aligned} & V W Y I G \\ & T E E A T \end{aligned}$		$\begin{aligned} & \text { QCGQ } \mathrm{C} \\ & \text { R S ON } \end{aligned}$	$\begin{aligned} & \text { I W J K A } \\ & \text { E E } \end{aligned}$	$\begin{aligned} & \text { GE GXN } \\ & \text { G } \quad 0 \end{aligned}$
D	$\begin{aligned} & \text { I DMRU } \\ & \text { E W O } \end{aligned}$	$\begin{aligned} & \mathrm{V} E \mathrm{ZYG} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \text { QIG G N } \\ & \text { ROOP } \end{aligned}$	$\begin{aligned} & \text { C T G Y O } \\ & \text { I } \quad 0 \end{aligned}$	$\begin{aligned} & \text { B P D B L } \\ & \text { H A D D } \end{aligned}$
E	$\begin{aligned} & \text { VCGXG } \\ & \text { TSO } \quad \text { T } \end{aligned}$	$\begin{array}{ll} \text { BKZ Z G } \\ \mathrm{H} & \mathrm{~T} \end{array}$	$\begin{aligned} & \text { I V X C U } \\ & \text { ED E } \end{aligned}$	N T Z A O	$\begin{array}{ll} \text { B W F E Q } \\ \text { HE E } \end{array}$
F	$\begin{array}{llll} \text { Q L F C C } \\ R & \text { E } \end{array}$	$\begin{aligned} & \text { M T Y Z T } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { C C B Y Q } \\ & \text { I S P } \end{aligned}$	$0 \underset{\text { A }}{\mathrm{P}} \mathrm{DKA}$	$\begin{aligned} & \text { G D G I G } \\ & \text { G } \quad 0 \mathrm{~A} \end{aligned}$
G	$\begin{aligned} & \text { V PWMR } \\ & \text { TACK } \end{aligned}$	$\begin{array}{llll} \text { Q I I I E W } \\ \text { R } & 0 & M & \text { H } \end{array}$	$\begin{array}{llll} \text { I C G X G } \\ \text { E S O } \end{array}$	$\begin{aligned} & \text { B L G Q Q } \\ & \text { H } \quad 0 \mathrm{~N} \end{aligned}$	$\begin{array}{llll} \text { V B G R S } \\ \text { TROC } \end{array}$
H	$\underset{0}{M} \mathbf{Y} \text { J J Y }$	$\begin{aligned} & \text { Q V F W Y } \\ & \text { R D } \quad \text { Q } \end{aligned}$	$\begin{aligned} & \text { RWNFL } \\ & S_{E} \end{aligned}$	$\begin{gathered} \text { G X N F } \\ \mathrm{G} \end{gathered}$	$\begin{aligned} & \text { M C J K X } \\ & 0 \text { S } \end{aligned}$
J	$\begin{gathered} \text { I D D R U } \\ \text { E } \\ 0 \end{gathered}$	$\begin{gathered} 0 \text { P J Q Q } \\ \text { A } N E \end{gathered}$	$\begin{gathered} \text { Z R H C N } \\ \text { C } \\ \text { E } \end{gathered}$	$\begin{aligned} & \text { V W D Y Q } \\ & \text { TE E } \end{aligned}$	$\begin{array}{llll} R & D & G & G \\ S & 0 & T \end{array}$
K.	$\begin{array}{lll} \text { BXX } \\ H & \text { B } \\ \hline \end{array}$	$\begin{aligned} & P \times F P U \\ & Q \\ & M \end{aligned}$	$\text { YXNF } \underset{T}{G}$	$\begin{aligned} & \text { M P J E L } \\ & 0 \text { A } \end{aligned}$	$\begin{aligned} & \text { SANC D } \\ & \text { C } \quad \text { E } \end{aligned}$
L.	$\underset{\mathrm{C}}{\mathrm{SEZZG}} \underset{\mathrm{~T}}{ }$	$\begin{aligned} & \text { I BEYU } \\ & \text { ER } \end{aligned}$	$\text { K D H } \underset{E}{C} A$	$\begin{aligned} & M B J J F \\ & 0 R \end{aligned}$	$\underset{0}{\text { K I L C }} \underset{\text { E }}{ }$
M.	$\underset{0}{\mathrm{M}} \underset{\substack{\text { F } \\ \text { D Z T } \\ \hline}}{ }$	$\begin{array}{lll} \text { C T J R } \\ \text { I } & 0 \end{array}$	$\begin{array}{cc} M & I \\ 0 & \text { Y Z } \\ 0 & \\ \hline \end{array}$	$\begin{array}{r} \text { AC JRR } \\ \text { S } \quad 0 \mathrm{~F} \end{array}$	$\begin{aligned} & \text { S B G Z N } \\ & \text { C R O } \end{aligned}$
N	$\begin{aligned} & Q Y A H Q \\ & R \end{aligned}$	$\begin{aligned} & \mathrm{VEDCQ} \\ & \mathrm{~T} \\ & \mathrm{EE} \end{aligned}$	$\text { L X N } \underset{\mathrm{E}}{\mathrm{C}} \mathrm{~L}$	$\begin{gathered} L V V C B \\ D \\ \text { D E } \end{gathered}$	$\begin{aligned} & \text { Q W B I I } \\ & \text { RE P A R } \end{aligned}$
P.	$\begin{aligned} & \text { I V J R N } \\ & \text { E D } 0 \end{aligned}$	$\begin{array}{lllll} W & N & B & R & I \\ U & P & O & R \end{array}$	VPJEL	$\begin{gathered} \text { TAG D N } \\ 0 \end{gathered}$	$\begin{aligned} & \text { IRGQP } \\ & \text { ECOND } \end{aligned}$
Q	$\begin{aligned} \text { ATYE W } \\ H \end{aligned}$	$\begin{aligned} & \text { C B Y Z T } \\ & I_{R} \end{aligned}$	$\begin{gathered} \text { EVGQU } \\ \text { D } 0 \text { N } \end{gathered}$	$\begin{aligned} & \text { V P Y H L } \\ & \text { T A } \end{aligned}$	$\begin{array}{cc} \mathrm{L} \\ \mathrm{R} & \mathrm{C} \\ \mathrm{C} & \mathrm{~N} \\ \hline \end{array}$
R.	$\underset{0}{\mathrm{X}} \underset{\mathrm{D}}{\mathrm{I}} \underset{\mathrm{D}}{ }$	$\begin{array}{lr} \text { I K W J Q } \\ \text { E } & \text { E } \end{array}$	$\begin{aligned} & \text { R D Z Y F } \\ & \text { S } \end{aligned}$	$\underset{E}{\text { K }} \underset{\mathrm{F}}{\mathrm{~F}} \mathrm{Z} \mathrm{~L}$	$\begin{array}{ll} G W F & \text { G } \\ G E & E \end{array}$
S	$\begin{aligned} & Q W J Y Q \\ & R E E \quad E \end{aligned}$				

22 Completing the solution - a Completion of solution is now a very easy matter The mixed component is finally found to be the following sequence, based upon the word EXHAUSTING
EXHAUSTINGBCDFJKLMOPQRVWYZ
and the complotely reconstructed skeleton of the cipher square is shown in Fig 13b
\qquad
\square
 Fraver 13
b Note that the successive equivalents of A_{p} spell the word APRIL, whech is the key for the message The plan-text message is as follow

REPORTED ENEMY HAS RETIRED TO NEWCHESTER ONE TROOP IS REPORTED AT HENDERSON MEETING HOUSE TWO OTHER TROOPS IN ORCHARD AT SOUTHWEST EDGE OF NEWCHESTER 2D SQ IS PREPARING TO ATTACK FROM THE SOUTH ONE TROOP OF 3D SQ IS CHESTER 2D SQ IS PREPARING TO ATTACK FROM THE SOUTH ONE TROOP OF 3D SQ IS NEWCHESTER FROM THE NORTH MOVE YOUR SQ INTO WOODS EAST OF CROSSROAD 539 AND E PREPARED TO SUPPORT ATTACK OF ZD AND 3D SQ DO NOT ADVANCE BEYOND NEWCHESTER MESSAGES HERE
c The preceding case is a good example of the value of the principles of durect symmetry of position when apphed properly to a cryptogram enciphered by the shding of a muxed component against the normal The cryptanalyst starts off with only a very lumited number of assumptions and bulds up many new values as a result of the placement of the few orignal values in the reconstruction skeleton

23 Solution of subsequent messages encuphered by the same capher component -a Preliminary remarks -Let it be supposed that the correspondents are using the same basic or primary component but with dfferent key words for other messages Can the knowledge of the sequence of letters in the reconstructed primary component be used to solve the subsequen alphabet was used the proces of complating the plan component could be appled to solve ubsequent messages in which the same apher component was ued, even though the apher omponent was set at a dufferent key letter A modification of the procedure used in that car an be used in this case, where a plurality of apher a phabets based upon a sliding pmary component is used.

6 The message - Let it be supposed that the following message passing between the same b The message-Let it be supposed that the following message
two correspondents as in the preceding message has been intercepted

Message

SFDZR	YRRKX	MIWLL	AQRLU	RQFRT	IJQKF	XUWBS	MDJZK
MICQC	UDPTV	TYRNH	TRORV	BQLTI	QBNPR	RTUHD	PTIVE
RMGQN	LRATQ	PLUKR	KGRZF	JCMGP	IHSMR	GQRFX	BCABA

OEMTL PCXJM RGQSZ VB

c Factoring and conversion into plain component equivalents -The presence of a repetition of a four-letter polygraph whose interval is 21 letters suggests a key word of seven letters There are very few other repetitions, and this is to be expected in a short message with a key of such length

The columns of equivalents are now as shown in Fig 15

e Examination and selection of generatruces - It has been shown that in the case of a monoalphabetic clpher it was merely necessary to complete the normal alphabet sequence beneath the plam-component equivalents and the plam text all reappeared on one generatrix It was also found that in the case of a multiple-alphabet crpher involving standard alphabets, the plaintext equivalents of each alphabet reappeared on the same generatrix, and it was necessary only case at hand both proper generatrices in order to produce the plain text of the message In the the letters of each column and then the generatrices are combined to produce the plann text The completely developed generatrix dagrams for the first two columns are as follows (Fig 16)

FVQUPRLWVGVHIOZHVDL 1 FVQUPRLWVGVHIQZHVDLF 2 GWRVQSMXWHWIJRAIWEMG 3 IYTXSUOZYJYKLTCKYGOI 3 IYTXSUOZYJYKLTCKYGOI 4 JZUYTVPAZKZLMUDLZHP 5 KAVZUWQBALAMNVEMAIQK 6 LBWAVXRCBMBNOWFNBJRL 7 MCXBWYSDCNCOPXGOCKSM 8 NDYCXZTEDODPQYHPDLTN 10 PFAEZBVGFQFRSAJRFNVF 11 QGBFACWHGRGSTBKSGOWQ 12 RHCGBDXIHSHTUCLTHPXR 13 SIDHCEYJITIUVDMUIQYS 14 TJEIDFZKJUJVWWENVJRZT 15 UKFJEGALKVKWXFOWKSAU 16 VLGKFHBMLWLXYGPXLTBV 7 WMHLGICNMXMYZZQQYMCW 18 XNIMHJDONYNZAIRZNVDX 19 YOJNIKEPOZOABJSAOWEY 0 ZPKOJLFQPAPBCKTBPXFZ 21 AQLPKMGRQBQCDLUCQYGA 22 BRMQLNHSRCRDEMVDRZHB 23 CSNRMOITSDSEFNWESAIC 4 DTOSNPJUTETFGOXFTBJD
25 EUPTOQKVUFUGHPYGUCKE
f Combining the selected generatrces -After some experimenting with these generatrices the 23d generatrix of Column 1 and the 1st of Column 2, which yield the dygraphs shown in Fig 17a, are combined The generatrices of the subsequent columns are selected in order to build up the play text The results are shown in Fig $17 b$ This process is a very valuable ard in the solution of mesages after the prmary component has been recovered as a result of the longer and more detaled analysis of the frequency distributions of the first message intercepted Very often a short message can be solved in no other way than the one shown, if the primary component is completely known
g Recovery of the key -It may be of interest to find the key ord for the message Assuming that encrphering method number 1 (see Par 7f, page 6) were known to be employed, all that is necessary is to set the mixed component of the cipher alphabet underneath the plain component so as to pioduce the clpher letter indicated as the equivalent of any given plain-text letter in each of the alphabets For example, in the first alphabet it is noted that $C_{D}=S_{c}$ Adjust the two components under each other so as to bing S of the clpher component beneath C of the plain component,

Plain.------- - ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ Cupher--EXHAUSTINGBCDFJKLMOPQRVWYZ

t is noted that $A_{D}=A_{0}$ Hence, the first letter of the key word to the message is A The 2d, 3d, 4th, $\quad 7$ th key letters are found in exactly the same manner, and the following is obtaned

When COFIRST equals
SFDZRYR then A_{p} successively equal
AZIMUTH
24 Summation of relative frequencies as an and to the selection of the correct generatrices In the foregong example, under subparagraph f, there occu experimenting with these generatrices \qquad By this was meant, of course, that the selection of the correct initial pair of generatrices of plain-text equwalents is in this process a matter of trial and error The test of "correctness" is whether, when juxtaposed, the two generatrices so selected yield "good" digraphs, that is, high-frequency digraphs such as occur in normal plain text In his early efforts the student may have some dufficulty in selecting, merely by ocular xamination, the most likely generatrices to try There may be in each diagram several gen ratnce combinations of generatrices may be quite large Perhaps a smple mathematical method may b Suppese in the process
b Suppose, in Fig 16, that each letter were accompanied by a number which correspond its relative frequency in normal English telegraphuc text Then, by adding the numbers along frequency values of the respective generatned will serve as relative numerical measures of value will be the correct generatrix because its total will represent the sum of the individual alues of the actual plantext letters In actual practice, of course, the generatrix with the greatest value may not be the correct one, but the correct one will certainly be among the thre or four generatrices with the largest values Thus, the number of trials may be greatly reduced, in the attempt to put together the correct generatrices
c Using the preceding message as an example, note the respective generatrix values in Fig 18 The frequency values of the respective letters shown in the figure are based upon the norma distribution for War Department telegraphic text (see Table 3, Appendix 1, Milhtary Crypt analysis, Part I)

Column 1

$$
\begin{aligned}
& \text { HXSWRTNYXIXJKSBJXFNH }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccccccccccccccccccccc}
0 & 0 & 3 & 2 & 0 & 2 & 3 & 7 & 0 & 0 & 0 & 4 & 2 & 8 & 4 & 4 & 0 & 8 & 3 & 0 \\
K & A & V & Z & W &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { L BWAVXRCBMBNOWFNBJRL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PFAEZBVGFQFRSAJRFNVP }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TJEIDFZKJUJVWENVJRZT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { UKFJEGALKVKWXFOWKSAU }
\end{aligned}
$$

$$
\begin{aligned}
& \text { VLGKFHBMLWLXYGPXLTBV }
\end{aligned}
$$

$$
\begin{aligned}
& \text { XNIMHJDONYNZAIRZNVDX }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllllllll}
Z & P & K & O & J & L & F & Q & P & A & P & B & C & K & T & B & P & X & F & Z \\
0 & 3 & 0 & 8 & 0 & 4 & a & 0 & 3 & 7 & z & 1 & 3 & 0 & 0 & 1 & 3 & 0 & 3 & 0
\end{array} \\
& \text { AQLPKMGRQBQCDLUCQYGA }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllllllll}
\mathrm{E} & \mathrm{U} & \mathrm{P} & \mathrm{~T} & \mathrm{O} & \mathrm{Q} & \mathrm{~K} & \mathrm{~V} & \mathrm{U} & \mathrm{~F} & \mathrm{U} & \mathrm{G} & \mathrm{H} & \mathrm{P} & \mathrm{Y} & \mathrm{G} & \mathrm{U} & \mathrm{C} & \mathrm{~K} & \mathrm{E} \\
\hline
\end{array}
\end{aligned}
$$

\qquad

 57 77Column 2
${ }_{0}^{\text {Generatrix }}$ NPDNNMUGSHGWQENCNSBZ
 $\begin{array}{lllllllllllllllllll}O & Q & E & O & O & N & V & H & T & I & H & X & R & F & O & D & O & T & C\end{array}$

 QSGQQPXJVKJZTHQFQVE
 RTHRRQYKWLKAUIRGRWFD
 SUISSRZLXMLBVJSHSXGE

 $\begin{array}{llllllllllllllllllll}U & W & K & U & U & T & B & N & Z & O & N & D & X & L & U & J & U & Z & I & G \\ 3 & 2 & 0 & 3 & 3 & 0 & 1 & 8 & 0 & 8 & 8 & 4 & 0 & 4 & 3 & 0 & s & 0 & 7 & 2\end{array}$ VXLVVUCOAPOEYMVKVAJH
 WYMWWVDPBQPFZNWLWBKI

 ZBPZZYGSETSICQZOZENL ACQAAZHTFUTJDRAPAFOM $\begin{array}{lllllllllllllllll}3 & 0 & 7 & 7 & 0 & 9 & 3 & 3 & 0 & 4 & 8 & 7 & 7 & 8 & 8 & 2\end{array}$
 CESCCBJVHWVLFTCRCHOB
 DFTDDCKWIXWMGUDSDIRP

 GIWGGFNZLAZPJXGVGLUS HJXHHGOAMBA Q K Y H W H M V

0	2	7	7	8	3	1	8	8	1	8	4	0	7	0	7	8	2	8
J	L	Z	J	J	I	Q	C	0	D	C	S	M	A	J	Y	J	0	X

 KMAKKJRDPEDTNBKZKPYW

d It will be noted that the frequency value of the 23d generatrix for the first column of cupher letters is the greatest, that of the first generatrix for the second column is the greatest In both cases these are the correct generatrices Thus the selection of the correct generatrices in such cases has been reduced to a purely mathematical basis which is at times of much assistance in effecting a quick solution Moreover, an understanding of the principles involved will be of considerable value in subsequent work

25 Solution by the probable-word method.-a Occasionally one may encounter a cryptogram which is so short that it contains no recurrences even of dygraphs, and thus gives no indications of if the sliding muxed component is known, one may panst the text and the slidng components to establish a key, if the correspondents are using aganst th key words

For example, suppose that the presence of the word ENEMY is assumed in the message in Par $23 b$ above One proceeds to check it against an unknown key word, sldang the already reconstructed muxed component against the normal and starting with the first letter of the cryptogram, in this manner

When ENENY equals
\quad SFDZR $^{\text {then } A_{p} \text { successively equals }}$

XENFW

The sequence XENFW spells no intelligible word Therefore, the location of the assumed word ENEMY is shfted one letter forward in the cipher text, and the test is made again, just as was explained in Par 15 When the group AQRLU is tried, the key letters ZIMUT are obtaned, which, taken as a part of a word, suggests the word AZTMUTH The method must yeld solution when the correct assumptions are made
c The danger to cryptographic security resulting from the inclusion of cryptographed addresses and signatures in cryptographic messages becomes quite obvious in the light of in Pars 19-22 It will berd method To lllustrate, reference is made to the message employed and that the latter was enciphered Suppose that this were an authorzed practice, and that every message could be assumed to conclude with a cryptographed signature The signature every message could be assumed to conclude with a cryptographed signature The signature
"TREER COL" would at once afford a very good basis for the quick solution of subsequent messages emanating from the same headquarters as did the first message, because presumably thes same signature would appear in other messages It is for this reason that addresses and signatures must not be cryptographed, if they must be included they should be cryptographed in a totally defferent system or by a wholly different method, perhaps by means of a special address and slgnature code It would be best, however, to omit all addresses and slgatures, and to let the call signs of the headquarters concerned also convey these parts of the message, learing the delvery to the addressee a matter for local action

26 Solution when the plain component is a maxed sequence, the cipher component, the normal - a This falls under Case B (2) outloned in Par 6 It is not the usual method of employing a single mixed component, but may be encountered occasionally in cipher devices
b The prolimunary steps, as regards factoing to determine the length of the period, are the same as usual The message is then transcribed into its periods Frequency distributions are then made, as usual, and these are attacked by the principles of frequency and recurrence, An attempt is made to apply the principles of direct symmetry of position, but this attempt will be futile, for the reason that the plam component is in this case an unknown muxed sequence
(See Par 18d) Any attempt to find symmetry in the secondary alphabets based upon the normal sequence can therefore disclose no symmetry because the symmetry which exists is based upon a wholly different sequence
c However, if the princıples of durect symmetry of position are of no avall in this case, there are ceitain other principles of symmetry which may be employed to great advantage To explain them an actual example will be used Let it be assumed that it is known to the cryptanalyst that the enemy is using the general system under discussion, tuz, a mixed sequence, component, and a repeating key, variable fic in message to message, is used in the ordinary manner

The following message has been intercepted

A	QEOVK	LRML Z	J V G T G	N D L V K	E V T Y	ERM U
B	VR Z M 0	Y A AMP	DKEIJ	S FMYO	Y HMME	GQAMB
C	UQAXR	H U F B U	K Q Y M U	NELVT	KQIL	-
D	U L I BK	N DAXB	X U D GL	L A D V	P 0	
E	LADHY	B	UEEME	FFMTE	G V W $\mathrm{B}^{\text {c }}$	TVDZL
F	S P B H B	x	UDYUE	LKMma	EUDD	NCFSH
G	HSAHY	TMGU	HQXPP	DKOUE	X UQVB	F V W
H	NXALB	TCDLM	I VAAA	NS Z I L	0 VWVP	Y AGEL
J	SHMME	G Q D H 0	Y H IVP	NCRRE	XKDQ	GKNCG
K	NQGUY	J IWY	TMAHW	XRLBL	OADLG	NQGUY
L	J U U G B	J HRV	ERFLE	GW GU0	XED	DKEIZ
M	VXNWA	FAANE	MKGHB	S SNLO	K J C B	G G L 0
N	P K M B X	H GERY	TMWLZ	NQCYy	T M	D K
P	FLNU J	NDTVX	JRZ TL	0 PAHC	D F	
Q	GPGTY	TECXB	HQEBR	K V W M U	N I	I Q
R	JKATE	GUWBR	H UQWM	VRQBW	Y R	K M
S	TMULZ	LAAH	J G DVK	LKRRE	X K	
T	XCGZA	H	V K M B W	ISAUE	F	
	SRQ Z L	A		FIGHP	GECZU	K

d A study of the recurrences and factorng their intervals discloses that five alphabets are involved Uniliteral frequency distributions are made and are shown in Fig 19a

Alphabet 1

$$
\text { Alphabet } 2
$$

Since the cupher component in this case is the normal alphabet, at follows that the five frequency distributions are based upon a sequence which is known, and therefore, the five frequenc distributions should manufest a direct symmetry of distribution of crests and troughs By virtue of this symmetry and by shfting the five distributions relative to one another to proper superm positions, the several distributions may be combined into a single unditeral distribution Note how this shuftng has been done in the case of the five allustrative distributions

f The superimposition of the respective distributions enables one to convert the cipher letters of the five alphabets into one alphabet Suppose it is decided to convert Alphabets 2,3,4, and 5 into Alphabet 1 It is merely necessary to substitute for the respective letters in the four alphabets those which stand above them in Alphabet 1 For example, in Fig 19b, X_{0} in Alphabet 2 is drectly under A_{c} in Alphabet 1, hence, if the supermmposition is correct then $\mathrm{X}_{0}=\mathrm{A}_{\mathrm{A}}$. Therefore, in the cryptogram it is merely necessary to replace every X_{0} in the second position by A_{c} Agann T_{0} in Alphabet $3=A_{c}$ in Alphabet 1, therefore, in the cryptogram one position by A_{c} Again T_{o} in Alphabet $3=A_{c}$ in Alphabet 1, therefore, in the cryptogram one
replaces every T_{c} in the third position by A_{c} The entire process, heremafter designated as conversion into monoalphabetcc terms, gives the following converted message

A	Q H V H	L UTXI	J Y N F P	N G S H T	EYUFH	E UT
B	V U G Y X	Y D HYY	D N L U S	SITKX	YKTY	G T
C	UTHJA	HXMND	KTFYD	N HSHC	K TPX	K C
D	UOPNT	NGHJK	X X K S U	L DKHT	PRHKX	D N
E	L DKTH	BYURE	U HLY N	FITFN	GY $\mathrm{DNH}^{\text {N }}$	T
F	S S TK	XYHLL	U GFGN	L T Y J	EXKPT	N F
G	HVHTH	TPNGS	HTEBY	D N V G N	XXXHK	F
H.	NAHXK	T FKXV	IYHMJ	NVGUU	OYDHY	Y
J.	SKTYN	GTKTX	Y K P H Y	NFYDN	X NKCI	G
K	NTNGH	J L $\mathrm{JKH}^{\text {H }}$	T P H TF	XUSNU	ODKXP	
L	J X B S K	JKYHG	EUMXN	G Z NGX	X HKFY	
M	VAUIJ	FDHZN	M N NTK	S V UXX	K M J N	
N	PNTNG	HJLDH	TPDXI	NTJKH	TPDU	
P.	FOUGS	NGAHG	JUGFU	OSHTL	D I GK	
Q	GSNFH	THJJK	HTLNA	KYDYD	NLUS	I
R	J NHFN	GXDNA	HXXIV	V U X N	Y U M N 0	K
S	T PBXI	LDHTH	J J K H T	L NYDN	XNUMX	N
T	X	HGNFU	VNTNF	IVHGN	F G U I	
V	S UXLU	AYUTU	GYDHT	FLNTY	G H J L	K

The unllteral frequency distribution for this converted text follows Note that the frequency of each letter is the sum of the five frequencies in the corresponding columns of Fıg $19 b$

The problem having been reduced to monoalphabetic terms, a triliteral frequency distr ution can now be made and solution readily attaned by sumple priciples. It melds the following

JAPAN CONSULTED GERMANY TODAY ON REPORTS THAT THE COMMUNIST INTERNATIONAL WAS BEHIND THE AMAZING SEIZURE OF GENERALISSIMO CHIANG KAI SHEK IN CHINA TOKYO ACTED UNDER THE ANTICOMMUNIST ACCORD RECENTLY SIGNED BY JAPAN AND GERMANY THE PRESS SAID THERE WAS INDISPUTABLE PROOF THAT THE COMINTERN INSTIGATED THE SEIZURE OF GENERAL CHIANG AND SOME OF HIS GENERALS MILITARY OB SERVERS SAID THE COUP WOULD HAVE BEEN IMPOSSIBLE UNLESS GENERAL CHANG HSUEN LIANG HOTHEADED FORMER WAR LORD OF MANCHURIA HAD FORMED AN ALLIANCE WITH THE COMMUNIST LEADERS HE WAS SUPPOSED TO BE FIGHTING SUCH AN ALLIANCE THES CHINA
h The reconstruction of the plan component is now a very smple matter It is found to be as follows

HYDRAULICBEFGJKMNOPQSTVWXZ
Note also, in Fug 19b, the keyword for the message, (HEAVY), the letters being in the columns headed by the letter H

The solution of subsequent messages with different keys can now be reached directly, by a simple modification of the principles explaned in Par 18 This modification consists in using for the completion sequence the mixed piain component (now known) instead of the normal alphabet, after the cupher letters have been converted into their plam-component equivalents Let the student confirm this by experiment

3 The probable-word method of solution discussed under Paragraph 20 is also applicable here, in case of very short cryptograms This method presupposes of course, possession of the mixed component and the procedue is essentially the same as that in Par 20 In the example discussed in the present paragraph, the letter A on the plann component was successively set aganst the key letters HEAVY, but this is not the only possible procedure
k "The student should go over carefully the principle of "conversion into monoalphabetic terms" explamed in subpa1agraph f above until he thoroughly understands it Later on he will oncounter cases (he cryptanalysis of more complex problems (Another example will be 45)

The principle allustrated in subparagraph e, that is, slufting two or more monoalphabetic frequency distributions relatively so as to bring them into proper alignment for amalgamation into a single monoalphabetic distribution, is called matching It is a very important crypt analytic principle Note that its practical application consists in slding one monoalphabetic of crests and troughs of one distıibution and the entire sequence of crests and troughs of the other distribution When the best point of coincidence has been found, the two sequences may be amalgamated and theoretically the single resultant distribution will also be monoalphabetic in character The successful application of the principle of matching depends upon several factors First, the cryptographc situation must be such that matchng is a cortect cryptographic step For example, the distributions in higure $19 b$ are properly subject to matching because the ciphe component in the basic sequences concerned in this problem is the normal sequence, while the plan component is a mixed sequence But it would be futile to tiy to match the distıubutions in figure 9 , for in that case the cipher component is a muxed sequence, the plan component is the normal sequence Hence, no amount of shuftung or matching can bring the distributions of
figure 9 into proper supermposition for correct amalgamation (If the occurrences in the various distributions in figure 9 had been distributed according to the sequence of letters in the muxed component, then matching would be possible, but in order to be able to distribute these occurences according to the mixed component, the latter has to be known-and that is just what unknown until the problem has been solved) A second factor involved in successful matching is the number of elements in the two distributions forming the subject of the test If both of them have very few talles, there is hardly sufficient information to permit of matching with any degree of assurance that the work is not in vain If one of them has many tallies, the other only a few, the chances for success are better than before, because the positions of the blanks in the two distributions can be used as a gude for their proper superimposation
m There are certan mathematical and statistical procedures which can be brought to bear pon the matter of cryptanalytic matching These will be presented in a later text However butions, he will heve to rely upon mere ocular examination as a guide to proper supermposition Obviously the more data he has in each distribution, the easier is the correct supermposition ascertaned by any method

Section VI
REPEATING-KEY SYSTEMS WITH MIXED CIPHER ALPHABETS, II
 Identical primary mixed components proceeding in the same drection ----------------------Cryptographnng and d
27. Further cases to be considered - a Thus far Cases B (1) and (2), mentioned in Paragraph 6 have been treated There remains Case B (3), and this case has been further subdivided as follows

Case B (3) Both components are mixed sequences
(a) Components are identical mixed sequences
(1) Sequences proceed in the same direction (The secondary alphabet are mixed alphabets)
(2) Sequences proceed in opposite drections (The secondary alphabets are reciprocal muxed alphabets)
(b) Components are different muxed sequences (The secondary alphabets are muxed alphabets)
b The first of the foregong subcases will now be examined
28 Identical primary mixed components proceeding in the same direction - a It is often the case that the mixed components are derived from an ensily remembered word or phrase o that they can be reproduced at any time from memory Thus, for example, given the ke word QUESTIONABLY, the following mixed sequence is derived

> QUESTIONABLYCDFGHJKMPRVWXZ
b By using this sequence as both plan and cipher component, that is, by sliding this sequence aganst itself, a series of 26 secondary muxed alphabets may be produced In encupherung a message, sliding strips may be employed with a key word to designate the particular and successive positions in which the strips are to be set, the same as was the case in previous examples of the use of sliding components The method of designating the positions, however, requires a word or two of comment at this point In the examples thus far shown, the key letter, as located on the cipher component, was always set opposite A, as located on the plann component, possibly an erroneous impression has been created, $\tau z z$, that this is invariably the rule This is decidedly not true, as has already been explamed in paragraph $7 c$ If it has seemed to be the case that $\theta_{\mathbf{x}}$ always equals A_{p} it is only because the text has dealt thus ${ }^{2}$ prop which the plam componen is thes varous conentions may be adopted in this respect, but the most common of them is to empar the lex letter θ_{1}, will be the mitial letter of the mixed sequence, in this case, Q Furthermore, to prevent the θ_{1}, will be the mitial letter of the mixed sequence, in this case, Q Furthermore, to prevent the possibility of ambaguty it will be stated again that the pair of encipherng equations
in the ensumg discussion will be the first of the 12 set forth under Par $7 f, v z, \theta_{k} / 2=\theta_{1} / 1, \theta_{p} / 1=\theta_{\mathrm{o}} / 2$ In this case the subscript " 1 " means the plann component, the subscript " 2 ", the cipher component, so that the enciphering equation is the following $\theta_{k} / l_{0}=\theta_{1} / /_{p}, \theta_{p} / p=\theta_{d} /$,
c By setting the two sliding components against each other in the two positions shown below, the cupher alphabets labeled (1) and (2) given by two key letters, A and B, are seen to be different
$\mathrm{K}_{\mathrm{Ey}} \mathrm{Letter}=\mathrm{A}$
${ }_{\downarrow}{ }_{\downarrow}$
Plann component. QUESTIONABLYCDFGHJKMPRVWXZQUESTIONABLYCDFGHJKMPRVWXZ Cipher component -. QUESTIONABLYCDFGHJKMPRVWXZ
$\stackrel{\uparrow}{\Theta_{\mathbf{x}}}$
Secondary alphabet (1)
Plann_----....-- ABCDEFGHIJKLMNOPQRSTUVWXYZ Cıpher-----...- H JPRLVWXDZQKUGFEASYCBTIOMN

Key Letter=B
$\stackrel{\theta}{1}^{1}$
Plain component... Cipher component QUESTIONABLYCDFGHJKMPRVWXZQUESTIONABLYCDFGHJKMPRVWXZ QUESTIONABLYCDFGHJKMPRVWXZ
$\stackrel{\uparrow}{\theta}_{\mathbf{E}}$
Secondary alphabet (2)
Plann ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher. JKRVYWXZFQUMEHGSBTCDLIONPA
d Very frequently a quadricular or square table is employed by the correspondents, instead of sliding strips, but the results are the same The cipher square based upon the word QUESTIONABL. is shown in $^{\text {Fig } 21}$ It will be noted that it does nothing more than set forth the successive positions of the two primary slidmg components, the top line of the square is the plan component, the successive horizontal lines below it, the cipher component in its various juxtapositions The usual method of employing such a square ($\mathbf{1} \mathrm{e}$, corresponding to the enciphering equations $\left.\theta_{\mathbf{k} / \mathrm{c}}=\theta_{1 / \mathrm{p}}, \theta_{\mathrm{p} / \mathrm{p}}=\theta_{\mathrm{c} / \mathrm{c}}\right)$ is to take as the cipher equivalent of a plan-text letter that letter which lies at the intersection of the vertical column headed by the plan-text letter and the horizontal row begun by the key letter For example, the cipher equivalent of E_{p} with keyletter T is the letter 0_{c}, or $\mathrm{E}_{\mathrm{p}}\left(\mathrm{T}_{\mathrm{k}}\right)=0_{e}$ The method given in paragraph b, for determining the cipher equivalents by means of the two shding strips yields the same results as does the cupher square

QUESTIONABLYCDFGHJKMPRVWXZ UESTIONABLYCDFGHJKMPRVWXZQ ESTIONABLYCDFGHJKMPRVWXZQU STIONABLYCDFGHJKMPRVWXZQUE TIONABLYCDFGHJKMPRVWXZQUES I ONABLYCDFGHJKMPRVWXZQUEST ONABLYCDFGHJKMPRVWXZQUESTI NABLYCDFGHJKMPRVWXZQUESTIO ABYYDFGHJKMRVWYZQUESTIONA YCDFGHJKMPRVWXZQUESTIONAB $L Y C D F G H J K M P R V W X Z Q U E S T I O N A B$
$Y C D F G H J K M P R V W X Z Q U E S T I O N A B L$ YCDFGHJKMPRVWXZQUESTIONABL
$C D F G H J K M P R V W X Z Q U E S T I O N A B L Y$ CDFGHJKMPRVWXZQUESTIONABLY
DFGHJKMPRVWXZQUESTIONABLYC DFGHJKMPRVWXZQUESTIONABLYC FGHJKMPRVWXZQUESTIONABLYCD
GHJKMPRVWXZQUESTIONABLYCDF GHJKMPRVWXZQUESTIONABLYCDF
$H J K M P R V W X Z Q U E S T I O N A B L Y C D F G$ HJKMPRVWXZQUESTICNABLYCDFG KMPRVWXZQUESTIONABLYCDFGHJ MPRVWXZQUESTIONABLYCDFGHJK PRVWXZQUESTIONABLYCDFGHJKM RVWXZQUESTIONABLYCDFGHJKMP VWXZQUESTIONABLYCDFGHJKMPR WXZQUESTIONABLYCDFGHJKMPRV XZQUESTIONABLYCDFGHJKMPRVW ZQUESTIONABLYCDFGHJKMPRVWX Figura 21
29. Cryptographing and decryptographing by identical primary mixed components - There is nothing of special interest to be noted in connection with the use either of identical mixed components or of an equivalent quadricular table such as that shown in Fig 21, in enciphering or deciphering a message The basic principles are the same as in the case of the slidng of one muxed component agaust the normal, the displacements of the two components being controlled by changeable key words of varying lengths The components may be changed at will and so on All thas has been demonstrated adequately enough in Elementary Milutary Cryptography, and Advanced Multary Cryptography
30. Principles of solution.-a Basically the principles of solution in the case of a cryptogram enciphered by two identical mixed slidung components are the same as in the preceding case Primary recourse is had to the pinciples of frequency and repetition of single letters, digraphs, trigraphs, and polygraphs Once an entering wedge has been forced into the problem, the subsequent steps may consist merely in continuing along the same ines as before, building up the solution bit by bit
b Doubtless the question has already arisen in the student's mind as to whether any pranciples of symmetery of position can be used to assist in the solution and in the reconstruction of the cipher alphabets in cases of the kind under consideration This phase of the subject will be taken up in the next section and will be treated in a somewhat detaled manner, because the theory and principles involved are of very wide application in cryptanalytics.

Section VII
THEORY OF INDIRECT SYMMETRY OF POSITION IN SECONDARY ALPHABETS
Reconstruction of primary components from secondary alphabets.
31 Reconstruction of primary components from secondary alphabets - a Note the two secondary alphabets (1) and (2) given in paragraph $28 c$ Externally they show no resemblance or symmetry despite the fact that they were produced from the same primary components Nevertheless, when the matter is studied with care, a symmetry of position is discoverable Because it is a hidden or latent phenomenon, it may be termed latent symmetry of position However, in previous texts the phenomenon has been designated as an indirect symmetry of postion and this terminology has grown into usage, so that a change is perhaps now madvisable Indirect symmetry of position is a very interesting and exceedingly useful phenomenon in cryptanalytics
b Consider the following secondary alphabet (the one labeled (2) in paragraph 28c)

c Assuming it to be known that this is a secondary alphabet produced by two primary identical muxed components, it is desired to reconstruct the latter Construct a chann of alternating plain-text and cipher-text equivalents, beginning at any point and continuing until the chain has been completed Thus, for example, beginning with $A_{p}=J_{o}, J_{D}=Q_{c}, Q_{p}=B_{o}$, and dropping out the letters common to successive parrs, there results the sequence $A \cup Q B$ By completing the chain the following sequence of letters is established
A JQBKULMEYPSCRTDVIFWOGXNHZ
d This sequence consists of 26 letters When slud against utself ut wall produce exactly the same secondary alphabets as do the primary components based upon the word QUESTIONABLY To demonstrate that this is the case, compare the secondary alphabets given by the two settings of the externally different components shown below
Plain component------ QUESTIONABLYCDFGHJKMPRVWXZQUESTIONABLYCDFGHJKMPRVWXZ Clpher component. QUESTIONABLYCDFGHJKMPRVWXZ
Secondary alphabet (1)
Plam . et (1)

Cipher -ABCDEFGHIJKLMNOPQRSTUVWXYZ

Plaın component_---.-. AJQBKULMEYPSCRTDVIFWOGXNHZAJQBKULMEYPSCRTDVIFWOGXNHZ Cipher component.-.--
Secondary alphabet (2)
 (52)

Since the sequence $A J Q B K$ alphabets as the sequence Q U EST equivalent to ges exactly the same equivalents in the secondary equivalent to the latter sequence For this reason the former sequ an equivalent primary component ${ }^{1}$ If the real or origne A J Q B K sequence is termed sequence, it is hidden or latent within the equivalent prim primary component is a key-word mixed by decimation of the equivalent primary compont primary sequence, but it can be made patent letters in the equivalent primary sequence in thequvalent primary component such as ane likely to have formed an unbroken the in the orginal primary component, and see if the interval between the first and second and Z in the equivalent primary component above Note the sequence WOGXNHZ a Z in the equile W Kin the distance or interval between the lettens M, X, and Z is two leters Continuing the chain b addung letters two intervals removed, the latent origunal primary component is made patent Thus

f It is possible to perform the steps given in c and e in a combined single operation when the original primary component is a key-word muxed sequence Starting with any par of letters (in the cipher component of the secondary alphabet) likely to be sequent in the key-word mixed sequence, such as JK_{c} in the secondary alphabet labeled (2), the following chain of digraphs may be set up Thus, J, K, in the plain component stand over Q, U, respectively, in the cipher component, Q, U, in the plain component stand over B, L, respectively, in the cipher component, and so on Connecting the pars in a series, the following results are obtained
$\mathrm{JK} \rightarrow \mathrm{QU} \rightarrow \mathrm{BL} \rightarrow \mathrm{KM} \rightarrow \mathrm{UE} \rightarrow \mathrm{LY} \rightarrow \mathrm{MP} \rightarrow \mathrm{ES} \rightarrow \mathrm{YC} \rightarrow \mathrm{PR} \rightarrow \mathrm{ST} \rightarrow \mathrm{CD} \rightarrow \mathrm{RV} \rightarrow$
$\mathrm{TI} \rightarrow \mathrm{DF} \rightarrow \mathrm{VW} \rightarrow \mathrm{IO} \rightarrow \mathrm{FG} \rightarrow \mathrm{WX} \rightarrow \mathrm{ON} \rightarrow \mathrm{GH} \rightarrow \mathrm{XZ} \rightarrow \mathrm{NA} \rightarrow \mathrm{HJ} \rightarrow \mathrm{ZQ} \rightarrow \mathrm{AB} \rightarrow \mathrm{JK}$
These may now be unted by means of their common letters
$\mathrm{JK} \rightarrow \mathrm{KM} \rightarrow \mathrm{MP} \rightarrow \mathrm{PR} \rightarrow \mathrm{RV} \rightarrow \operatorname{etc}=\mathrm{JKMPRVWXZQUESTIONABLYCDFGH}$
The orignoal primary component is thus completely reconstructed
g Not all of the 26 secondary alphabets of the series yelded by two shding primary components may be used to develop a complete equivalent prumary component If examination be made, compents when the method of reconstruction shown in subparagraph c above is followed Fo example the following secondary alphabet, which is also derived, from the primary component based upon the word QUESTIONABLY will not yreld a complete chain of 26 plann text-cipher plain text equivalents
\qquad ABCDEFGHIJKLMNOPQRSTUVWXYZ Clpher.---- CDHJOKMPBRVFWYLXTZNAIQUEGS
${ }^{1}$ Such an equivalent component is merely a sequence which has becn or can be developed or derived from the orgginal sequence or basic primary component by applying a decimation process to the latter, conversely,
the origunal or basic component can be derived from an equivalent component by applying the same sort of process to the equivalent component By decimation is meant the selection of elements from a sequence according to some fixed interval For example, the sequence A E IM 1 derived, by decimation, from the normal alphabet by selecting every fourth lettex

Equivalent primary component

h It is seen that only 13 letters of the chain have been established before the sequence begins to repeat itself It is evident that exactly one-half of the chain has been established The other half may be established by beginning with a letter not in the first half Thus

(Tho B D J sequence begins again)
2 It is now necessary to distribute the letters of each half-sequence withn 26 spaces, to correspond with therr placements in a complete alphabet This can only be done by allowing a constant odd number of spaces between the letters of one of the half-sequences Distributions are therefore made upon the bassis of $3,5,7,9$, spaces Select that distribution which most nearly comncides with the distribution to be expected in a key-word component Thus, for example, with the first half-sequence the distribution selected is the one made by leaving three spaces between the letters It is as follows

3 Now interpolate, by the same constant interval (three in this case), the letters of the other half-sequence Noting that the group $\mathrm{F}-\mathrm{H}$ appears in the foregoing distribution, it is apparent that G of the second half-sequence should be inserted between F and H The letter which mates to the right of G, and so on, until the interpolation has been completed This yields the orignal primary component, which is as follows

k Another method of handling cases such as the foregoing is indicated in subparagraph f By extending the principles set forth in that subparagiaph, one may reconstruct the following chain of 13 parrs from the secondary alphabet given in subparagraph g

Now find, in the foregoing chain, two pairs likely to be sequent, for example HJ and KM and count the interval between them in the chain It is 7 (counting by pairs) If this decimation interval is now applied to the chain of pars, the following is established

l The reason why a complete chann of 26 letters cannot be constructed from the secondary alphabet given under subparagraph g is that it represents a case in which two primary com ponents of 26 letters were shd an even number of intervals apart (This will be explanned in urther detal in subparagraph r below) There are in all 12 such casos, none of which will admit of the construction of a complete chain of 26 letters In addution, there is one case wheren, despite the fact that the prumary components are an odd number of intervals apart, the secondary alphabet cannot be made to yeld a complete chan of 26 letters for an equivalen primary component This is the case in which the displacement is 13 intervals Note the secondary alphabet based upon the primary components below (which are the same as those hown in subparagraph d)

Pbimary Component

QUESTIONABLYCDFGHJKMPRVWXZ

 DFGHJKMPRVWXZQUESTIONABLYC
Secondary Alphabet

Plamn_-_--_-_ ABCDEHIJKLMNOPQRSTUVWXYZ Clpher----- RVZQGUESKTIWOPMNDAHJFBLYXC
m If an attempt is made to construct a chain of letters from this secondary alphabet alone, no progress can be made because the alphabet is completely reciprocal However, the cryptanalyst need not at all be baffled by this case The attack will follow along the lines shown below m subparagraphs n and 0
n If the original primary component is a key-word muxed sequence, the cryptanalyst may reconstruct it by attempting to "dovetal" the 13 reciprocal pars (AR,BV,CZ, DQ, EG, FU,HS, IK, JT, LW, MO, NP, and XY) into one sequence The members of these pairs are all 13 intervals apart Thus

Write out the serres of numbers from 1 to 26 and insert as many pars into position as possible being guided by considerations of prohable partial sequences in the key-word muxed sequence, Thus

$$
\begin{aligned}
& \begin{array}{lllll}
0 \\
A & 1 & 2 & 8 \\
\hline
\end{array} \\
& \stackrel{18}{18} \mathrm{~V}_{\mathrm{H}}^{16} \mathrm{Z}_{\mathrm{Q}}^{16}
\end{aligned}
$$

It begins to look as though the key-word commences with the letter Q, in which case it should be followed by U This means that the next par to be inserted is FU Thu

The sequence ABCDF means that E is in the key Perhaps the sequence is ABCDFGH Upon trial, using the pairs EG and HS, the followng placements are obtamed

This suggests the word QUEST or QUESTION The pair JT is added

The sequence G H J suggests G H J K, which places an I after T Enough of the process has been shown to make the steps clear
o Another method of crrcumventing the dufficulties introduced by the 14th secondary alphabet (displacement interval, 13) is to use it in conjunction with another secondary alphabet which is produced by an even-interval displacement For example, suppose the following two secondary alphabets are available ${ }^{1}$

> | ABCDEFGHIJKLMNOPQRSTUVWXYZ |
| :---: |
| RVZQGUESKTIWOPMNDAHJFBLYXC |
| XZESKTIORNAQBWVLHYMPJCDFUG |
| FIoukE 23 |

The first of these secondaries is the 13 -interval secondary, the second is one of the eveninterval secondaries, from which only half-chain sequences can be constructed But if the construction be based upon the two sequences, 1 and 2 in the foregoing diagram, the following is obtauned
RXUTNLDHMVZEIAYFJPWQSOBCGK

This is a complete equivalent primary component The orignal key-word muxed component can be recovered from it by decimation based upon the 9th interval
RVWXZQUESTIONABLYCDFGHJKMP
p (1) When the primary components are identical mixed sequences proceeding in opposite directions, all the secondary alphabets will be reciprocal alphabets Reconstruction of the prumary component can be accomplished by the procedure indicated under subparagraph o above Note the following three reciprocal secondary alphabets

$$
\begin{aligned}
& \text { 1--- PMHGQFDCWYLKBRVAENZXUOITJS } \\
& \text { 2-WVMKSJHGQFDRCXZYILEUTBANPO } \\
& \text { 3.-- TSSZLXWVNRPEMIOKCJBAYHGFUD }
\end{aligned}
$$

pigure 2.

(2) Using lines 1 and 2, the following chain can be constructed (equivalent primary component)
PWQSOBCGKRXUTNLDHMVZEIATFJ
${ }^{1}$ The method of writing down the secondaries shown in figure 23 will hereafter be followed in all cases when alphabet reconstruction skeletons are necessary The top line will be understood to be the plan component, it ${ }^{12}$ common to all the secondary alphabets, and is set off from the cipher components by the heavy black line This top line of letters wll be designated by the digit \varnothing, and will be referred to as "the zero line" in the daagram The successive lines of letters, which occupy the space below the zero line and which contain the various cipher
components of the several secondary alphabets, wnll be numbered serially These numbers may then be used as reference numbers for deygnating the horiontal lines in the diagram The numbers standing above the letters may be used as reference numbers for the vertical columns in the diagram Hence, any letter in the reconstruction skeleton may be designated by coordinates, giving the horizontal or X coordinate first Thus, D (2-11)
means the letter D standing in line 2 , Column 11

Or, using lones 2 and 3

WTYKZODPUAGVSLJXICMQNFREBH
The orignal key-w ord muxed primary component (based on the word QUESTIONABLY) can be recovered from either of the two foregoing equivalent primary components But if lines 1 and 3 are used, only half-chams can be constructed
PTFXAKECVOHQL and MSDWNJUYRIGZB

This is because 1 and 3 are both odd-interval secondary alphabets, whereas 2 is an eveninterval secondary It may be added that odd-nnterval secondaries are characterized by having two cases in which a plain-text letter is encuphered by itself, that is, θ_{D} is identical with θ_{c} two cases in which a plain-text letter is enciphered by itself, that is, θ_{p} is identical with θ_{o}
This phrase "identical with" will be represented by the symbol \equiv, the phrase "not identical whis" will be represented by the symbol \equiv (Note that in secondary alphabet number 1 above, $F_{p} \equiv F_{s}$ and $U_{p} \equiv U_{a}$, in secondary alphabet number 3 above, $M_{p} \equiv M_{s}$ and $O_{p} \equiv O_{d}$) This charactenstic will enable the cryptanalyst to select at once the proper two secondaries to work with in case several are avalable, one should show two cases where $\theta_{p} \equiv \theta_{0}$, the other should show none
q (1) When the primary components are dufferent muxed sequences, their reconstruction from secondary clpher alphabets follows along the same lines as set forth above, under 6 to j inclusive, with the exception that the selection of letters for building up the chain of equralent for the primary cipher component is restricted to those below the zero line in the reconstruction skeleton Havng reconstructed the prmary cupher component, the plann component can be readly reconstructed This will become clear if the student will study the followng example

- ABCDEFGHIJKLMNOPQRSTUVWXYZ
1.-. TVABULIQXYCWSNDPFEXGRHJKMO
2-... Z JTVIQRMONKXEAGBWPLHYCDFU

figurar 25

(2) Using only lines 1 and 2 , the following chain is constructed
TZPGLIQRHYOUVJCNEWKDASXMFB

This is an equivalent primary cipher component By finding the values of the successive letters of this chain in terms of the plain component of secondary alphabet number 1 (the zero letters), the following is obtained

$$
\begin{aligned}
& T Z P G L I Q R H Y O U V J C N E W K D A S X M F B \\
& A S P T F G H U V J Z E B W K N R L X O C M I Y Q D
\end{aligned}
$$

The sequence ASPT is an equivalent primary plann component The orginal keyword muxed components may be recovered from each of the equivalent primary components That for the prmary plain component is based upon the key PUBLIS the primary cupher component is based upon the key QUESTIONABLY
(3) Another method of accomplsslung the process mdicated above can be illustrated graphrcally by the following two chauns, based upon the two secondary alphabets set forth in subparagraph q (1)
(4) By joming the letters in Column 1, the following chain is obtained ADQYIM, etc If this be examined, it will be found to be an equivalent primary of the sequence based upon PUBLISHERS MAGAZINE By joining the letters in Column 2, the followng chan is obtanned TBFMXS This is an equivalent pumary of the sequence based upon QUESTIONABLY
r A final word concerning the reconstruction of primary components in general may be added It has been seen that in the case of a 26 -element component sliding against itself (both components proceeding in the same direction), it is only the secondary alphabets resulting from odd-interval displacements of the primary components which permit of reconstructing a single 26-letter chain of equivalents This is true except for the 13th interval displacement, which chain of equivalents can be established from the secondary alphabet This exception complete chain of equivalents can be established from the secondary alphabet This exception gives the which enter into the picture W_{1} th the exception of displacement-interval 1 any daplacement unterval which is a sub-multipple of, ol has a factor in common woth the number of letters din the premmary 2nterval which us a sub-multinple of, on has a factor in common with the number of letters in the prumary sequence wull yueld a secondary alphabet from which no complete chain of 26 equivalents can be
derved for the construction of a complete equvalent prumary component This general rule is derved for the construction of a complete equivalent prumary component This general rule is
applicable only to components which progress in the same durection, if they progress in opposite directions, all the secondary alphabets are reciprocal alphabets and they behave evactly like the reciprocal secondaries resulting from the 13 -interval displacement of two 26 -letter identical components progressing in the same durection
s The foregoing remarks give rise to the followng observations based upon the general rule pointed out above Whether or not a complete equivalent primary component is derivable by decimation from an original primary component (and if not, the lengths and numbers of chains of letters, or incomplete components, that can be constructed in attempts to derive such equivalent components) will depend upon the number of letters in the orginal promary component and the specific decimation interval selected For example, in a 26 -letter ongunal primary component, decimation interval 5 will yield a complete equivalent primary component of 26 letters, whereas decimation intervals 4 or 8 will yield 2 chaus of 13 letters each In a 24-letter component, decimation interval 5 will also yield a complete equvalent primary component (of 24 letters), but decimation interval 4 will yeld 6 chains of 4 letters each, and decimation interval 8 will
yeld 3 chains of 8 letters each It also follows that in the case of an onginal primary component in which the total number of characters is a prime number, all decimation intervals will yreld complete equivalent primary components The followng table has been drawn up in the ight of these observations, for ongunal primary sequences from 16 to 32 elements (All primeworous decmation intervals omitung in each case the first interval, which merels gives the raun ren The the the the the 32 down to 16 (The student should bear in mind that sequences containing characters in addition to the letters of the alphabet may be oncountered, he can add to this table when he is tion to the letters of the alphabet may be oncountered, he can add to this table when he 18 for each combination of decimation interval and length of, original sequence, the lengths of the chains of characters that can be constructed (The student may note the symmetry in each column) The bottom line shows the total number of complete equivalent primary components which can be derived for each dufferent length of original component

		,	ber of	daracta	\%	䢒	mima	comp			
32	30	28	27	26	25	24	22	21	20	18	16
16	15	14	27	13	25	12	11	21	10	9	8
32	10	28	9	26	25	8	22	7	20	6	16
8	15	7	27	13	25	6	11	21	5	9	4
32	6	28	27	26	5	24	22	21	4	18	16
16	5	14	9	13	25	4	11	7	10	3	8
32	30	4	27	26	25	24	22	3	20	18	16
4	15	7	27	13	25	6	11	21	5	9	2
32	10	28	9	26	25	8	22	7	20	2	16
16	3	14	27	13	5	12	11	21	,	9	8
32	30	28	27	26	25	24	2	21	20	18	16
8	5	7	9	13	25	2	11	7	5	3	4
32	30	28	27	2	25	24	22	21	20	18	16
16	15	2	27	13	25	12	11		10	9	8
32	2	28		26	5	8	22	7	4	6	
2	15	7	27	13	25	6	11	21	5	9	
32	30	28	27	26	25	24	22	21	20		
16	5	14	9	13	25	4	11	7	10		
32	30	28	27	26	25	24	22	21			
8	3	7	27	13	5	6	11				
32	10	4	9	26	25	8					
16	15	14	27	13	25	12					
32	30	28	27	26	25						
4	5	7	9	13							
32	6	28	27								
16	15	14									
32	10										
8	15										
32											
16											
14	6	10	16	10	18	16	8	10	6	4	6

Section VIII

APPLICATION OF PRINCIPLES OF INDIRECT SYMMETRY OF POSITION

Applying the principles to a specific example The cryptogram employed in the exposition
Fundamental theory
Application of principles
General remarks-.-
32 Applying the principles to a specific example - a The preceding section, with the many detalls covered, now forms a sufficient base for proceeding with an exposition of how the many details covered, now forms a sufisien can be appled very early in the solution of a polyprinciples of indirect symmetry of position can be applyed the secondary cipher alphabets for the enciphering of the cryptogram
b The case described below will serve not only to explain the method of applying these principles but will at the same time show how their application greatly faclitates the solution of a single, rather difficult, polyalphabetic substitution cipher It is realized, of course, that the cryptogram could be solved by the usual methods of frequency and long, patient expermmentation However, the method to be described was actually applied and very material amount of time and labor that would otherwise have been required for solution

33 The cryptogram employed in the exposition - a The problem that will be used a ciphe exposition involves an actual cryptogram shich the same random muxed alphabet appears, both device having two concentric disks upon which the same ranned from a study of the descriptive alphabets progressing in the same darection the usual process of factoring, it was determined crrcular accompanyng the cryptogram By the message as arranged according to its period that the cryptogram min which all repetitions of two or more letters are indicated
b The triliteral frequency distributions are given in Figure 28 It will be seen that on ccount of the brevity of the message, considering the number of alphabets involved, the frequency distributions do not yield many clues By a very careful study of the repetitions, tentative individual determinations of values of cipher letters, as illustrated mo 31, and 32, were made These are given in sequence and in detail in order forth nothing artaficial or arbitrary in the preliminary (60)

62
Triliteral Frequency Diftribttion

III

IV

viII

IX

Figure 28

64
Initial Values From Assumptions
${ }_{G_{\mathrm{c}}}^{1}=\mathrm{E}_{\mathrm{p}}, \stackrel{2}{\mathrm{c}}^{2}=\mathrm{E}_{\mathrm{p}}, \stackrel{3}{\mathrm{X}_{\mathrm{c}}}=\mathrm{E}_{\mathrm{p}}$, and $\stackrel{5}{\mathrm{D}_{\mathrm{c}}}=\mathrm{E}_{\mathrm{p}}$, from frequency considerations.

1	2	8	4	5	6	7	8	0	10
W	F	U	P	C	F	0	C	J	Y

$\frac{\mathrm{E}}{\mathrm{T}} \frac{\mathrm{P}}{\mathrm{T}} \mathrm{H}$
B GBZDPFBOUO
G
C $\underset{\mathrm{E}}{\mathrm{G}}$
D KZUGDYETR
D KZ $\frac{U G}{T H} \frac{D}{E}$
E $\underset{E}{G} J X N L W Y \underline{U} X$
F IKWEPQZOKZ
F I K W E PQZOKZ

H GKQHOLODVM E E
I G OXSNZHASE $1 \quad \mathrm{E} E$
J B B JIPQFJHD
K Q CBZEXQTXZ
LJCQRQFVMLH
M SRQEWMLNAE
N $\frac{\underline{G} S}{E} \frac{X E R O}{E} \mathrm{~J} \frac{\mathrm{SE}}{T H}$
O G VQWE JMKGH

1	2	3	4	8	6	7	8	8	10
R	C	V		P	N				

P RCVOPNBLEW
Q LQZAAAMDCH
R BZZCKQOIKF
S CFBSCVXCHQ
T ZTZS $\underset{E}{\mathrm{Z}} \mathrm{MXWCM}$
U RKUHEQEDGX ET
V FKVHPJJKJY
W YQDPGJXLL
W YQD $\frac{P C J X}{T H E}$
$X \underset{E}{G H X E R O Q} \frac{P E}{T H}$
Y GK BWTLFD
E E
Z OCDHWMZTUZ
AA $K L B \frac{P C J}{T H E} O X E$
BB HSPOPNMDLM
CC $\underset{E}{G} C K W D V E L \frac{S E}{T H}$ DD GS UGDPOTHX

| 10 | 2 | 8 | 1 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | |
| | K | D | Z | F | M | T | G | Q | J | EE $\underset{E}{B K D F M T G Q J}$ FF L $\underset{T}{F U T} Y \mathrm{EVVG}$ GG \underline{Z} GWNKXJTRN

 II BGBWWOQRGN JJ HHVLAQQVAV KK JQWOOTTNVQ

LL $\frac{B K X D S}{E} \underline{X} \underset{T}{\operatorname{SN}}$
MM $\underline{Y} U X \underline{O} P$ PYOXZ
NN HOZOWMXCGQ
$00 \mathrm{JJ} \frac{U G D W}{T H E} \underline{V} \underline{V}$
PP U KW $\frac{\mathrm{K}}{\mathrm{T}} \mathrm{P}$ EXXENE
QQ C C UGDWPEUH
THE
RR YB WEWVMDYJ
SS R Z X

Additional Values from Assumptions (I) Refer to line DD in Figure 29, $\stackrel{2}{5}_{0}$ assumed to be N_{D} Refer to line M in figure $29, \stackrel{9}{A_{c}}$ assumed to be W_{D}

Refer to Figure 30, line A, | 1 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| W | 2 | F | U | 4 | |
| U | 5 | 5 | 6 | 7 | 8 | ——TTH————

Refer to Figure 30, lines N and X, where repetition $\begin{gathered}3^{3} \mathrm{X}_{\mathrm{A}} \mathrm{E}_{\mathrm{s}}^{\mathrm{s}} \mathrm{R} \mathrm{O}_{\mathrm{o}} \text { occurs, assume EACH } \\ \mathrm{E}---\end{gathered}$

Additional Values From Assumptions (III)
${ }^{45}{ }^{5} \mathrm{6}$ —assume ING from repetition and frequency
${ }_{\mathrm{H}}^{\mathrm{H}} \mathrm{OZ}$-assume ING from repetition and frequency

A | | F | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 BuTHOUGH | GB B D P F |
| :--- |
| E |
| N |
| N |

C GRFTZMQMAV $\mathrm{E} \quad \frac{\mathrm{WI}}{\mathrm{W}}$
D KZUGDYFTRW THTHE
E G JXNLWYOUX
${\underset{\mathrm{G}}{\mathrm{E}}}^{\mathrm{J}} \underset{\mathrm{E}}{\mathrm{X}}$
F IKWEPQZOKZ $\frac{K}{E} \frac{E}{A} \frac{1}{N}$
G PRXDWLZICW
H GKQHOLODVM EEU

J BBJI $\underset{N}{P Q F H D}$
K QCBZEXQTXZ
L JCORQFVMLH
$M S R Q E M M N A \underset{W}{E}$
N G S XEROZJ SE
O GVQWEJMKGH
 IN G
Q LQZAAAMDCH
R BZZCKQOIKF
S CFBSCVXCHQ
S $\underset{\mathrm{U}}{\mathrm{C}} \underset{\mathrm{H}}{\mathrm{F}} \underset{\mathrm{G}}{\mathrm{G}} \frac{\mathrm{X}}{\mathrm{I}} \frac{\mathrm{H}}{\mathrm{I}}$
T Z TZS DMXWCM RK RKUTHEQEDGX ET
V FKVHPJJK JY Y Q D P OXLL THE
X GHXEROQPSE E EAC $\bar{H} T H$
Y GKBWTLFDUZ E E
Z OCDH WMZTUZ

POPNMDL
BB $\underset{N}{\mathrm{H}} \mathrm{P} \frac{O P N M D L M}{I N G}$
CC $\underset{E}{G} C K W D V E L \frac{S E}{T H}$
DD GS UGDPOTHX
$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ B_{E} & K & D & Z & F & M & T & G & Q & J\end{array}$
FF L $\underset{U T}{F T} Y \underset{E}{T} Z V \frac{H Q}{I N}$
GG $\underset{G}{Z} G W N K X J T R N$
HH YTXC DPMVLW E E
II $B G \underline{B W W} \underset{H}{O} R G N$
JJ HHVLAQQV $\frac{A V}{W I}$
KK JQWOOTTNVQ
LL $\frac{B K}{E} \frac{X D}{E} \underset{H}{O} \underset{T}{\operatorname{O}} \underset{T}{N}$
MM $\underline{Y} U X \frac{0 P P Y O X Z}{I}$

$00 \mathrm{JJ} \frac{U G D W Q R V M}{T H E}$

QQ C C UGDWPEUH THE
RR YBEEWVMDYJ
SS R Z X
c From the inital and subsequent tentative identifications shown in Figures 29, 30, 31, and 32 , the values obtaned weie arranged in the form of the secondary alphabets in a reconstruc-
tion skeleton, shown in Figure^{23}

$\emptyset 1$	A	B	C	D		E	F	G	H	I	J	K	L	L ${ }^{\text {N }}$	N	N	0	P	Q	R	S	5	T	U	V	W	X	y	Z
1		W				G		Z															K						
2	G					K			Z						S									F					
3						x																	U						
4	E					T			G	0													P						
5			R			D			c						P	P													
6	V					J			0								F												
7																								0					
8								C																					
9									J	H													S			A			
10			5						E	V					a	Q													$1 k$

Trater 3
34 Fundamental theory - a In paragraph 31, methods of reconstructing primary components from secondary alphabets were given in detal It is necessary that those methods be fully understood before the following steps be studied It was there shown that the primary component can be one of a series of equivalent primary sequences, all of which will give exactly sumlar results so far as the secondary alphabets and the cryptographic text are concerned It is not necessary that the identical or onginal primary component employed in the cryptographing be reconstructed, any equivalent prmary sequence will serve The whole question is one of establishing a sequence of letters the interval between which is either identical with that in the orignal primary component or else is an exact constant multiple of the interval separating the letters in the onginal primary component For example, suppose K PXNQ forms a sequence in the onginal primary component Here the interval between K and P, and P and X, X and N, N and Q is one, in an equvalent primary component, say the sequence $K \quad P$ N. Q, the interval between K and P is three, that between P and X also three, and so on, and the two sequences will yield the same secondary alphabets So long as the interval between Kand P, P and X, X and N, N and Q, , a a constant one, he sequence woll be cryptographically those of the orignal armery sequen However, in the case of a 26 -letter component, it is hecessary that this interi al be an odd number other than 13 , as these are the only cases which will yeld one unbroken sequence of 26 letters Suppose a secondary alphabet to be as follows
then be sadd that the primary component contans the following sequences

$$
\mathrm{XN} \quad \mathrm{KP} \quad \mathrm{NQ} \quad \mathrm{PX}
$$

These, when united by means of their common letters, yield K P X N Q Suppose also the following secondary alphabet is at hand

$$
\text { (2) }\left\{\begin{array}{l}
\text { Plain_-.------------- } \\
\text { Cupher-- }
\end{array}\right.
$$ ABCDEFGHIJKLMNOP

Here the sequences PN, XQ, $K X$, and $N Z$ can be obtamed, which when united yleld the two sequences $K X Q$ and $P N Z$
By a comparison of the sequences K P X N Q, K X Q, and P N Z, one can establish the following

$$
\begin{aligned}
& K P X N Q \\
& K \quad X \\
& P \quad . N
\end{aligned}
$$

It follows that one can now add the letter Z to the sequence, making it KPXNQ Z
b The reconstruc can now ada the letter Z to the sequen of the secondary alphabets by the an This is at hand ply ofter a cryptogram has been completely solved But if one could employ This als at mand or scant or skeletonized secondary alphabets simultaneously with the analysis of the and solve the cryptogram much more rapidly than would otherwise be possible
c Suppose only the cipher components of the two secondary alphabets (1) and (2) given bove be placed into juxtaposition Thus
he sequences PX, XN, and KP are given by juxtaposition These, when united, yeld KPXN part of the primary sequence It follows, therefore, that one can employ the cipher components of secondary alphabets as sources of independent data to assist in bulding up the primary sequences The usefulness of this point will become clearer subsequently

35 Application of principles - a Refer now to the reconstruction skeleton shown in Figure 33 Hereafter, in order to avoid all ambiguity and for ease in ieference, the position of letter in Figure 33 will be indicated as stated in footnote 1, page 56 Thus, $N(6-7)$ refers to the letter N in line 6 and in column 7 of Figure 33
b (1) Now, consider the following pars of letters

$$
\begin{aligned}
& \begin{array}{ll}
\mathrm{E}(\emptyset-5) & J \\
\mathrm{G}(6-7) & \mathrm{N} \\
(6-5) \\
(6-8)
\end{array} \\
& \mathrm{G}(0-7) \quad \mathrm{N}(6-7) \\
& \left\{\begin{array}{lll}
\mathrm{H}(6)-8) & \mathrm{F} & (6-8) \\
0(0-15) & \mathrm{F} & (6-15)
\end{array}\right\} \mathrm{HO}, \mathrm{OF}=\mathrm{H} O \mathrm{~F}
\end{aligned}
$$

(One is able to use the line marked zero in Figure 33 since this is a muxed sequence shding aganst etself)
(2) The immediate results of thus set of values will now be given Having HOF as a sequence with EJ as belonging to the same displacement interval, suppose HOF and EJ are placed into juxtaposition as portions of slding components Thus
nents Thus

$$
\begin{array}{ll}
\text { Plasn_ ---- } & \text { H O } \\
\text { Conher } & \text { F. J }
\end{array}
$$

When $H_{p}=E_{\rho}$, then $O_{p}=J_{c}$
(3) Refer now to alphabet 10, Figure 33, where it is seen that $H_{p}=E_{c}$ The derved value, $J_{p}=J_{c}$, can immedrately be inserted in the same alphabet and substituted in the cryptogram
(4) The student may possibly get a clearer idea of the principles involved if he will regar the matter as though he were dealing with arithmetical proportion For instance, given any three terms in the proportion $28=416$, the 4th term can easily be found Furthermore, given the pair of values on the left-hand side of the equation, one may find numerous pairs of values which may be inserted in the right-hand side, or vice versa For instance, $28=416$ oll now be that $E(0-5)$ H $(\emptyset-8)=J(6-5) 0(0-8)$ Now $E(10-8) H(0-8)=?(10-15) 0(015)$ is cloar that J moy be mas the 2 d term in the mportant new value, $0_{p}^{10}=J_{e}$, which is exactly what was obtaned drectly above, by means of the partial sliding components As an example of the second principle, note the following pairs

$$
\begin{array}{ll}
\mathrm{E}(0-5) & \mathrm{H}(6-8) \\
\mathrm{K}(2-5) & \mathrm{Z}(2-8) \\
\mathrm{D}(5-5) & \mathrm{C}(5-8) \\
J(0-5) & 0(6-8) \\
\mathrm{K}(1-20) & \mathrm{Z}(1-7)
\end{array}
$$

$$
T(\emptyset-20) \quad G(\emptyset-7)
$$

Therefore, $E H=K \quad Z=D \quad C=J \quad O=T G$, and T may be inserted in position (4-5)
c (1) Again, GN belongs to the same set of displacement-interval values as do EJ and HOF Hence, by superimposition

$$
\begin{array}{ll}
\text { Plain. ..- } & \text { H O F } \\
\text { Cipher..-- } & \text { G N }
\end{array}
$$

(2) Referring to alphabet 4, when $\mathrm{H}_{\mathrm{p}}=\mathrm{G}_{\mathrm{c}}$, then $\mathrm{O}_{\mathrm{p}}=\mathrm{N}_{\mathrm{c}}$. Therefore, the letter N can be inserted m position (4-15) in Figure 33, and the value $\mathrm{N}_{\mathrm{o}}=\mathrm{O}_{\mathrm{p}}$ can be substituted in the cryptogram
(3) Furthermore, note the corroboration found from this particular supermposition:

$$
\begin{array}{cc}
H(0-8) & \text { G (} 0-7) \\
0(6-8) & N(6-7)
\end{array}
$$

Thus checks up the value in alphabet $6, \mathrm{G}_{\mathrm{p}}=\mathrm{N}$
d (1) Again superimpose HOF and GN

$$
\begin{array}{r}
\text { H } 0 \text { F } \\
\text { G N }
\end{array}
$$

(2) Note this corroboratio

$$
\begin{array}{ll}
0(6-8) & G(4-8) \\
F(6-15) & N(4-15)
\end{array}
$$

e (1) Again using HOF and EJ, but in a different supermposition

H
 E J

(2) Refer now to $H(9-9), \mathrm{J}(9-8) \quad$ Directly under these letters is found $V(10-9), \mathrm{E}(10-8)$

Therefore, the V can be added immedıately before $\mathrm{H} O \mathrm{~F}$, making the sequence VHOF
f (1) Now take V H O F and juxtapose it with E J, thus

V H 0

(2) Refer now to Fugure 33, and find the following

$$
\begin{array}{ll}
\text { V (10-9) } & \text { E (10-8) } \\
\text { H (9-9) } & \text { J }(9-8) \\
0(4-9) & \text { G (4-8) } \\
\text { I (}(0-9) & \text { H }(\emptyset-8)
\end{array}
$$

(3) From the value $0 G$ it follows that G can be set next to J in E J Thus

V H

E J G
(4) But $\mathrm{G} N$ already is known to belong to the same set of droplacement-nterval values as E J Therefore, it is now possible to combine E J, J G, and G N into one sequence, E J G N, yrelding

$$
\begin{array}{llll}
\text { V H O F } \\
\text { E J G N }
\end{array}
$$

g (1) Refer now to Fugure 33

	(0-22)	E
9	(1-22)	G (1-5)
9	(2-22)	K (2-5)
	(3-22)	X (3-5)
	(5-22)	D (5-5)
	(6-22)	J (6-5)

(2) The only values which can be inserted are

$$
\begin{array}{ll}
0(1-22) & G(1-5) \\
H(6-22) & J(6-5)
\end{array}
$$

3) This means that $V_{D}=O_{0}$ in alphabet 1 and that $V_{p}=H_{c}$ in alphabet 6 There is one O_{0} in the frequency distribution for alphabet 1 , and no H_{c} on that for alphabet 6 The frequency distribution is, therefore, corroborative insofar as these values are concerned
(h) (1) Further, taking E J G N and V H $0 F$, superimpose them thus

$$
\begin{aligned}
& \text { EJGN } \\
& \mathrm{VHOF}
\end{aligned}
$$

(2) Refer now to Figure 33
which has just been inserted in Figure 33, as stated above
(3) From the diagram of supermposition the value G (1-5) F (1-8) can be inserted, which gives $H_{p}=F_{0}$ in alphabet
${ }^{2}$ (1) Agam, V H OF and E J G N are juxtaposed

$$
\begin{gathered}
\text { VHOF } \\
\text { E.JGN }
\end{gathered}
$$

(2) Refer to Figure 33 and find the following

$$
\begin{array}{ll}
\text { H (}(\emptyset-8) & \text { G }(4-8) \\
\text { A (}(4-1) & \text { E }(4-1)
\end{array}
$$

This means that it is possible to add A, thus
AVHOF
EJGN
(3) In the set there are also

$$
\begin{array}{ll}
E(\emptyset-5) & G(1-5) \\
G(\emptyset-7) & Z(1-7)
\end{array}
$$

Then in the supermposition

$$
\begin{aligned}
& \text { E J G N } \\
& \mathrm{J} \text { G N }
\end{aligned}
$$

It is possible to add \mathbf{Z} under G, making the sequence E J GN Z (4) Then takıng
and referring to Figure 33

$$
\begin{aligned}
& \text { AVHOF } \\
& \text { E J GNZ }
\end{aligned}
$$

It will be seen that $0=Z$ from superimposition, and hence in alphabet $6 \mathrm{~N}_{\mathrm{p}}=\mathrm{Z}_{e}$, an importan new value, but occurring only once in the cryptogram Has an error been made? The work 0 far seems too corroborative in interlocking detauls to think so

3 (1) The possibilities of the superimposition and sliding of the AVHOF and the EJGNZ sequences have by no means been exhausted as yet, but a little different trail this time may be adrisable
(2) Then

	T (0 -20)
G (1-5)	K (1-20)
K (3-5)	U (3-20)
	$\begin{aligned} & \text { G N Z } \\ & \text { K . } \end{aligned}$

(3) Now refer to the following

E (ø-5) K (2-5)
$N(\theta-14) \quad S(2-14)$

whereupon the value S can be inserted

$$
\cdot T \cdot E J G N Z
$$

k (1) Consider all the values based upon the displacement interval corresponding to JG

$$
\begin{aligned}
& J(6-5) G(1-5) \rightarrow J(9-8) \quad G(4-8) \\
& \mathrm{N}(6-7) \mathrm{Z}(1-7) \quad \mathrm{H}(9-9) \mathrm{O}(4-9) \\
& S(9-20) \quad P(4-20) \rightarrow S(2-14) \quad P(5-14) \\
& \begin{array}{ll}
\mathrm{Z}(2-8) & \mathrm{C}(5-8) \\
\mathrm{K}(2-5) & \mathrm{D}(5-5)
\end{array}
\end{aligned}
$$

(2) Since J and G are sequent in the $E J G N Z$ sequence it can be said that all the letter of the foregoing pars are also sequent Hence Z C, S P , and K D are avalable as new data These give E J G N Z C and T K D S P
(3) Now consider

$$
\begin{array}{ll}
\mathrm{T}(\square-20) & \mathrm{P}(4-20) \\
\mathrm{A}(\square-1) & \mathrm{E}(4-1) \\
\mathrm{H}(\square-8) & \mathrm{G}(4-8)
\end{array}
$$

Now in the $T \quad K \quad D \quad S \quad P$ sequence the interval between T and P is T Hence the interval between A and Eis 6 also It follows therefore that the sequences A V H O F and E J G N Z C should be unted, thus
(4) Corroboration is found in the interval between H and G , which is also six The letter I can be placed into position, from the relation I ($\emptyset-9) 0(4-9)$, thus
(1) From Figure 33

$$
\begin{array}{ll}
H(\emptyset-8) & Z(2-8) \\
E(\eta-5) & K(2-5) \\
N(\eta-14) & S(2-14) \\
U(\emptyset-21) & F(2-21)
\end{array}
$$

(2) Since in the I AVHOF EJGNZC sequence the letters H and Z are separated by 8 intervals one can write

(3) Hence one can make the sequence

m (1) Subsequent derivations can be indicated very briefly as follows

$$
\begin{array}{ll}
E(\emptyset-5) & C(9-3) \\
D(5-5) & R(5-3)
\end{array}
$$

 one can write

$$
\begin{array}{lllllll}
\\
& 1 & 2 & 3 & 4 & C
\end{array}
$$

and

making the sequence

(2) Another derivation

$$
\begin{array}{ll}
U(3-20) & T(0-20) \\
X(3-5) & E(0-5)
\end{array}
$$

 one can write

U I
and
E
T
X
making the sequence

(3) Another derivation

$$
\begin{array}{cc}
E(\emptyset-5) & G(1-5) \\
B(\emptyset-2) & W(1-2) \\
E J G & \\
E & G
\end{array}
$$

From
one can write
and then
There is only one place where B W can fit, $n z$, at the end
n Only four letters remain to be placed into the sequence, viz, L, M, Q, and Y Their positions are easily found by application of the primary component to the message The complete sequence is as follows

Having the primary component fully constructed, decipherment of the cryptogram can be completed with speed and precision The text is as follows
WFUPCFOCJY RCVOPNBLCW BKDZFMTGQJ BUTTHOUGHW POSINGTHES SELFWILLGO GBZDPFBOUO LQZAAAMDCH ECANNOTASY
GRFTZMQMAV ETREVIEWWI

KZUGDYFTR THTHEMINDS G JXNLWYOUX EYEOURPAST ITWEPQZOKZ WECANTOANE PRXCWLZICW GKQHOLODVM EEOURFUTUR GOXSNZHASE EWECANWITH BBJIPQFJHD SCIENTIFIC CBZEXQTXZ CONFIDENCE JCQRQFVMLH OOKFORNAR SRQEWMLNAE DTOATIMEWH G S XEROZJSE ENEACHOFTH GVQWEJMKGH BODIESCOM

OLARSYSTEM BZZCKQOIKF SHALLTURNA CFBSCVXCHQ NUNCHANGIN ZTZSDMXWCM EINPER RKUHEQEDGX PETUITYTOT FKVHPJJKJY HESUNEACHW YQDPCJXLLL ILLTHENHAV GHXEROQPSE EREACHEDTH GKBWTLFDUZ EENDOFITSE OCDHWMZTUZ OOLUTIONSE KLBPCJOTXE TINTHEUNCH HSPOPNMDLM ANGINGSTAR GCKWDVBLSE EOFDEATHTH GSUGDPOTHX ETHESUNTT

haver 3

LFUYDTZVHQ OUTBECOMIN ZGWNKXJTRN GACOLDANDL YTXCDPMVLW IFELESSMAS BGBWWOQRGN SANDTHESOL HHVLAQQVAV ARSYSTEMWI JQWOOTTNVQ
LLCIRCLEUN BKXDSOZRSN SEENGHOSTL Y UXOPPYOXZ IKEINSPACE HOZOWMXCGQ AWAITINGON JJUGJWQRVM LYTHERESUR UKWPEFXENF CCUGDWPEUH NOTHERCOSM Y B WEWVMDYJ ICCATASTRO $R Z X$
$P H E$
o The primary component appears to be a random-mixed sequence, no key word is to be found, at least none reappears on experimentation with vanious hypotheses as to enciphering equations Nevertheless, the random construction of the pumary component did not complcate or retard the solution

Slction IX
REPEATING-KEY SYSTEMS WITH MIXED CIPHER ALPHABETS, III Solution of messages enciphered by known primary components -3 Solution of repeating-key ciphers in which the deatical mived components proceed in opposite direction Solution of repeating-hey ciphers in which the primary components are different mixed sequences

頻

37 Solution of subsequent messages enciphered by the same primary components -a the discussion of the methods of solving repeating-key cuphers using secondary alphabets derived from the sliding of a mixed component aganst the normal component (Section V), it was shown how subsequent messages enciphered by the same pair of primary components but with differen
 (paragraphs 23, 24) The present paragraph deals with the apphication
b Suppose that the following primary component has been reconstructed from the analysis of a lengthy cryptogram
QUESTIONABLYCDFGHJKMPRVWXZ

A new message exchanged between the same correspondents is intercepted and is suspected of having been encipheied by the same primary components but with a different key The message is as follows

$$
\begin{array}{lllll}
\text { NFWWP NOMKI WPIDS CAAET QVZSE } \\
\text { YOJSC AAAFG RVNHD WDSCA } & \text { EGNFP } \\
\text { FOEMT HXLJW PNOMK IQDBJ IVNHL }
\end{array}
$$

TFNCS BGCR P
c Factoring discloses that the period is 7 letters The text is transeribed accordingly, and is as follows

The letters belonging to the same alphabet are then employed as the initial letters of completion sequences, in the manner shown in paragraph 23e, using the already reconstructed primary component The completion dagrams for the first five letters of the first three alphabets are as follows

Alpabary 1

APTWT
$A P T W$
$B R I X I$
BRIX
LVOZ
V

Y WNQ
$C X A U A$
X
CXA
$\mathrm{D} Z \mathrm{~B}$

D Z BEEB
FQLS

*HECIC
J S D O D
KTEN
MIGAG
POHBH
RNJLJ
VAKYK
WBMCM
XLPDP
ZYRFR
QCVGV
JDWHW
EXXX
GOM
IJUPU

OKERE

e Examining the successive generatives to select the ones showing the best assortment of high-frequency letters, those marked in Figure 38 by asterisks are chosen These are then assembled in columnar fashion and yreld the following plan text

123 $H A$
 ET
 C 0 N
 I ME

0 N
f The corresponding key-letters are sought, using enciphering equations $\theta_{\Sigma / 0}=\theta_{1 / p}, \theta_{\mathcal{D} / \mathrm{D}}=$ $\theta_{\text {c/o }}$, and are found to be JOU, which suggests the keyword JOURNEY Testing the key-letters RNEY for alphabets $4,5,6$, and 7 , the following results are obtained

$$
\begin{aligned}
& \text { HAVEDTR } \\
& \text { SCAAETQ } \\
& \text { CCTEDSE }
\end{aligned}
$$

The message may now be completed with ease It is as follows

JOURNEY	JOURNEY
HAVEDIR	SAINCEI
NFWWPNO	PFOEMTH
ECTEDSE	NTHEDIR
MKIWPID	XLJWPNO
CONDREG	ECTIONO
SCAAETQ	MKIQDBJ
IMENTTO	FHORSES
VZSEYOJ	IVNHLTF
CONDUCT	HOEFALL
SCAAAFG	NCSBGCR
THORORE	S
RVNHDWD	
CONNAIS	
SCAEGNF	

38 Solution of repeating-key ciphers in which the identical mixed components proceed in opposite drectuons.-The secondary alphabets in this case (paragraph 6, Case B (3) (a) (II) are reciprocal The steps in solution are essentinlly the same as in the preceding case (paragraph 28), the principles of mdirect symmetry of position can also be apphed with the necessary modifications introduced by virtue of the reciprocity existing within the respective secondary alphabets (paragraph 31p)

39 Solution of repeating-key ciphers in which the primary components are dufferent mixed sequences.-This is Case B (3) (b) of paragraph 6 The steps in solution are essentially the same as in paragraphs 28 and 31, except that in applying the principles of indirect symmetry of posithon it is necessary to take cognizance of the fact that the primary components are dufferent muxed sequences (paragraph 31q)

40 Solution of subsequent messages after the primary components have been recovered.a In the case in which the primary components are identical mixed sequences proceedng in opposite drections, as well as in that in which the primary components are different muxed
equences, the solution of subsequent messages ${ }^{1}$ is a relatively easy matter In both cases, howver the student must remember that before the method illustrated in paragraph 37 can be appled it is necessary to convert the cipher letters into their plam-component equivalent apphed it is necessary to convert the cipher letters into ther plam-component equivalent before completing the plan-component sequence From
b Perhaps an example may be adnisable Suppose the enemy has been found to be using prmary components based upon the keyword QUESTIONABLY, the plain component running from left to right, the cipher component in the reverse drection The followng new message has arrived from the intercept station

ZIXZNL
WHOXI
EOOOEP
ZFXSRX
J J S HB
ONAURA
PZINRA
VXOXA
I JYXWF
KNDOM

ERCURA
LVBZA

UWJWXY
I DGRKD
Q B DRMQ
ECYVQW

${ }^{1}$ That is, messages intercepted after the primary components have been reconstructed and enciphered by seys different

	82	
Coluna 1	Colune 2	Couvan 3
OQEWQWMIOP	SPQMYAKQSA	UFBMUHJPUF
NUSXUXPONR	TRUPCBMUTB	EGLPEJKREG
AETZEZRNAV	*IVERDLPEIL	SHYRSKMVSH
BSIQSQVABW	OWSVFYRSOY	TJCVTMPWTJ
LTOUTUWBLX	NXTWGCVTNC	IKDWIPRXIK
YINEIEXLYZ	A ZIXHDWIAD	OMFXORVZOM
COASOSZYCQ	BQOZJFXOBF	NPGZNVWQNP
DNBTNTQCDU	L UNQKGZNLG	ARHQAWXUAR
*FALIAIUDFE	Yeaumh Qayh	bVJUBXZEbV
GBYOBOEFGS	CSBEPJUBCJ	LWKELZQSLW
HLCNLNSGHT	DTLSRKELDK	Y XMSYQUTYX
JYDAYATHJI	FIYTVMSYFM	CZPTCUEICZ
KCFBCBIJ $\mathrm{K}^{\text {O }}$	GOCIWPTCGP	DQRIDESODQ
M DGLDLOKMN	HNDOXRIDHR	FUVOFSTNFU
PFHYFYNMPA	JAFNZVOFJV	GEWNGTIAGE
RGJCGCAPRB	K BGAQWNGKW	HSXAHIOBHS
VHKDHDBRVL	MLHBUXAHMX	JTZBJONLJT
W J M F JFLVWY	PYJLEZBJPZ	KIQLKNAYKI
X K P G K G Y W X C	R CKYSQLKRQ	MOUYMABCMO
ZMRHMHCXZD	VDMCTUYMVU	PNECPBLDPN
QPVJPJDZQF	WFPDIECPWE	*RASDRLYFRA
URWKRKFQUG	XGRFOSDRXS	VBTFVYCGVB
EVXMVMGUEH	ZHVGNTFVZT	WLIGWCDHWL
SWZPWPHESJ		XYOHXDFJXY
TXQRSRJSTK	UKXJBOHXUO	ZCNJZFGKZC
I ZUVZVKTIM	EMZKLNJZEN	QDAKQGHNQD

Mavir 4

83
d The key letters are sought, and found to be NUM, which suggests NUMBER The entire message may now be read with ease It is as follows

N U M B ER	N UMBER
FIRSTC	ELAYIN
MVXOXB	I J Y X W
AVALRy	GPOSIT
Z I Y Z N L	K N D O W
LeSSTH	I ONAND
W Z H OXI	ERCURA
IRDSQU	WILL L P
EOOOEP	LVBZA
A D R O N W	OTECT
Z FXSRX	U W J W X
ILLOCC	EFTFL
E J B S H B	I D GRK
UPYAND	NKOFB
ONAURA	Q B DRMQ
DEFEND	IGADE
P ZINRA	ECYVQ
FIRSTD	
MVXOXA	

e If the primary components are different mixed sequences, the procedure is identical with that just indicated The important point to note is that one must not fail to convert the letter into their plan-component equivalents before the completion-sequence method is apphed

Columnar assembling of selected generatrices gives what is shown in Fig 45

1	2	3	
F	I	R	
A	V	A	
L	E	S	
I	R	D	
A	D	R	
I	L	L	
U	P		
D	E	F	
F	R		
E	L A		

Section X
REPEATING-KEY SYSTEMS WITH MIXED CIPHER ALPHABETS, IV

plain text Deriving the secondary alphabets, the primary components, and the keywords for mossages, given two or more cryptograms in different keys and suspected to contann identical plan text The case of repeating-key systems.

 of the general principles and procedure in the solution of typical cases of repeating-key ciphers This section will be devoted to a consideration of the variations in cryptanalytic procedure ansin from special crrcumstances It may be well to add that by the designation "special crrcumstances" it is not meant to imply that the latter are necessarily unusual curcumstances The student should always be on the alert to senze upon any opportuntives that may appear in whech he may apply the methods to be described In practical work such opportunities are by no means rare and are seldom overlooked by competent cryptanalysts

42 Denving the secondary alphabets, the primary components, and the key, given a cryptogram with its plain text - a It may happen that a cryptogram and its equivalent plan text are at hand, as the result of capture, plferage, compiomise, etc This, as a general rule, affords a very easy attack upon the whole system
b Takng first the case where the plain component is the normal alphabet, the cipher component a mixed sequence, the first thing to do is to write out the clpher text with its letter-foretter decipherment From this, by a slight modification of the principles of "factorng", one discovers the length of the key It is obvious that when a word of three or four letters is enciphered by the same cipher text, the interval between the two occurrences is almost certanly a multiple of the length of the key By noting a few recurrences of plann text and clpher letters, one can quickly determine the length of the key (assuming of course that the message is long enough to ing to its periods, with the plain text likewise in periods under the cipher letters From this arrangement one can now reconstruct complete or partial secondary alphabets If the secondery alphabets are complete, they will show direct symmetry of position, if they are but fragmentory alphabets are complete, they wil show direct symmen af position, principles of direct symmetry of position c If the plain component of position
c If the plain component 18 a muxed sequence, and the cupher component the normal (drect or reversed sequence), the secondary alphabets will show no direct symmetry unless they are arranged in the form of deciphering alphabets (that is, $A_{0} \quad Z_{0}$ above the zero line, with ther d (1) iel
(1) If the plain and cipher primary components are identical muxed sequences proceeding an be used for the speedy recondary alphabets wll show indirect symmetry of position, and they
(2) If the plain and the cipher primary components are identical mixed sequences proceeding in opposite drections, the secondary alphabets will be completely reciprocal secondary alphabets and the primary component may be reconstructed by applying the principles outlined in paragraph 31p
(3) If the plann and the cipher primary components are dufferent muxed sequences, the condary alphabets will show indurect symmetry of position and the primary components may be reconstructed by applying the principles outhned in paragraph $31 q$
e In all the foregoing cases, after the primary components have been reconstructed, the keys can be readly recovered
43. Deriving the secondary alphabets, the primary components, and the keywords for messages, given two or more cryptograms in different keys and suspected to contain identical plann text - a The simplest case of this kind is that involving two monoalphabetic substitution ciphers with muxed alphabets derived from the same pair of shding components An understanding of this case is necessary to that of the case involving repeating-key clphers
b (1) A message is transmitted from station A to station B B then sends A some operating sugnals which indicate that B cannot decipher the message, and soon thereafter A sends a second message, identical in length with the first This leads to the suspicion that the plain text of both messages is the same The intercepted messages are supermposed Thus
 2 EMMH FGVUB PRJNG JKWHM RAPJM KMPRW ZTAXG JJMCD HBPKY PVKIV QOJPR BMUSH
(2) Intrating a chain of cupher-text equivalents from message 1 to message 2 , the following complete sequence is obtained

(3) Expermentation along already-mdicated lines soon discloses the fact that the foregong component is an equivalent primary component of the origunal primary based upon the keyword QUESTIONABLY, decimated on the 21st interval Let the student decipher the cryptogram
(4) The foregoing example is somewhat artificial in that the plann text was consciously selected with a view to making it contain every letter of the alphabet The purpose in doing this was to permit the construction of a complete choin of equivalents from only two short messages, in order to give a simple illustration of the principles involved If the plain-text message does not contain every letter of the alphabet, then only partial chains of equivalents can be contructed These may be unted, if circumstances will permit, by recourse to the various prinples elucidated in paragraph 31
(5) The student should carefully study the foregoing example in order to obtain a thorough comprehension of the reason why it was possible to reconstruct the primary component from the wo cipher messages without having any plain text to begin with at all Since the plann text of both messages is the same, the relative displacement of the primary components in the case of message 2 by a fixed interval Therefore, the distance between N and E (the first letters of the two messages), on the prmary component, regardless of what plan-text letter these two wo messages), on the prisary comp the distance between E and W (the 18th letters), W and K (the 17th letters), and so on Thus, this fixed interval permits of establishing a complete chain of letters separated by constant intervals and this chain becomes an equivalent primary component.

44 The case of repeating-key systems - a With the foregoing basic principles in mind the student is ready to note the procedure in the case of two repeating-key ciphers having identical plain texts First, the case in which both messages have keywords of identical length but different compositions will be studied
b (1) Given the following two cryptograms suspected to contain the same plain text
Message 1

Y H Y EX	UBUKA	PVLLT	A B U V V	D Y S AB
PCQTU	NGKFA	ZEFIZ	B D E Z	ALVID
TROQS	U H AFK			
		Message 2		
C G S L	Q UBMN	C TYBV	HLQ FT	F L R H L
MTAIQ	ZWMDQ	NS DWN	LCBLQ	NETOC
V S N Z R	B J N OQ			

(2) The first step is to try to determine the length of the period The usual method of factoring cannot be employed because there are no long repetitions and not enough repetitions even of dıgraphs to give any convincing indications However, a subterfuge will be employed, based upon the theory of factoring
c (1) Let the two messages be supermposed

$$
\begin{aligned}
& 2 \text { CGSLZQUBMNCTYBVHLQFT }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \text { FLRHLMTAIQZWMDQNSDWN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LCBLQNETOCVSNZRBJNOQ }
\end{aligned}
$$

(2) Now let a search be made of cases of identical superimposition For example, L and L $\begin{array}{lll}6 \\ U & 18 \\ U & 30 \\ Q\end{array}$
are separated by 40 letters, Q, Q, and Q are separated by 12 letters Let these intervals between dentical superimpositions be factored, just as though they were ordinary repetitions Tha factor which is the most frequent should correspond with the length of the period for the following reason If the period is the same and the plann text is the same in both messages, then the condition of identity of superimposition can only be the result of identity of encipherments by dentical cipher alphabets This is only another way of saying that the same relative position in the keying cycle has been reached in both cases of identity Therefore, the distance between identical supermpositions must be either equal to or else a multiple of the length of the period Hence, factoring the intervals must yield the length of the period The complete list of intervals
and factors applicable to cases of identical superimposed pairs is as follows (factors above 12 are omitted)

Repetitlon	Interval	Fact	Repetation	Interval	Factors
1st EL to 2d EL -----	40	2, 4, 5, 8, 10	1st TV to 2d TV.	36	2, 3, 4, 6, 9, 12
1 st UQ to 2d UQ	12	2, 3, 4, 6, 12	1st AH to 2d AH. --.	8	2, 4, 8
2 d UQ to 3d UQ	12	2, 3, 4, 6, 12	1st BL to 2d BL --	8	2, 4, 8
1st UB to 2d UB	48	2, 3, 4, 6, 8,12	2d BL to 3d BL	16	2, 4, 8
1st KM to 2d KM.	24	2, 3, 4, 6, 8, 12	1 st SR to 2 d SR	32	2, 4, 8
1st AN to 2d AN.	36	2, 3, 4, 6, 9, 12	1st FD to 2d FD. .-	4	2,4
2 d AN to 3d AN	12	2, 3, 4, 6, 12	1st ZN to 2d ZN -	4	2,4
1st VT to 2d VT	8	2, 4, 8	1st DC to 2d DC..	8	2, 4, 8
2 d VT to 3d VT. -	28	2, 4, 7			

(3) The factor 4 is the only one common to every
d Let the messages now be superimposed according to their periods

1 HAFK
JNO
e (1) Now distribute the superimposed letters into a reconstruction skeleton of "secondary alphabets ' Thus

\emptyset	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q		T	T	v	W	X	Y	z
1		L		F	S			J	0		M	Y			N				I	I			Z	C	Q
2	N			c		D		G				B				M	Z			Q				L	
3	Q	U	T			0			w	B		E		z		C		R	V	V	F			S	
4	H				L		W				Q						A			B	T				N

(2) By the usual methods, construct the primary or an equivalent primary componen Taking lines \emptyset and 1 , the following sequences are noted
$\mathrm{BL}, \mathrm{DF}, \mathrm{ES}, \mathrm{HJ}, \mathrm{IO}, \mathrm{KM}, \mathrm{LY}, \mathrm{ON}, \mathrm{TI}, \mathrm{XZ}, \mathrm{YC}, \mathrm{ZQ}$,
which, when united by means of common letters and study of other sequences, yold the complete orignal primary component based upon the keyword QUESTIONABLY
UUESTIONABLYCDFGHJKMPRVWXZ
(3) The fact that the parr of lines with which the process was commenced yield the original primary sequence is purely accidental, it might have just as well yrelded an equivalent primary sequence,
f (1) Having the primary component, the solution of the messages is now a relatively ample matter An application of the method elucidated in paragraph 37 is made, involving the comple tion of the plaun-component sequence for each alphabet and selecting those generatrices which contain the best assortments of high-frequency letters Thus, using Message 1

friat Alpabixt	Sycond Alprabist	thrid ampas	Fourth Alphamzs
$\underline{\mathrm{Y}} \mathrm{X}$ L L ${ }^{\text {c }}$	HUALU	Y B P T V	EUVAV
C ZMYL	J EBYE	CLRIW	SEWBTV
D Q P C Y	K S L C S	D Y V OX	TSXLX
FURDC	MTYDT	FCWNZ	ITZYZ
GEVFD	PICFI	GDXAQ	OIQCQ
HS W G F	RODGO	HFZBU	NOUDU
J TX H G	VNFHN	J G Q L E	* A EFE
K I J H	WAGJA	K H U Y S	BASGS
M O Q K J	X B HK	MJECT	L B THT
P N UMK	ZLJML	PKSDI	YLIJ I
RAEPM	Q Y K P	RMTFO	CYOKO
V B SRP	UCMRC	V P I G N	DCNMN
W L T VR	EDPVD	WROHA	FDAPA
XY I W V	SFRWF	X V N J B	GFBRB
Z Cox	TGVXG	ZWAKL	H G L V L
Q ${ }^{\text {N Z X }}$	I HWZ H	Q X B M Y	J HYWY
UFAQZ	0 JXQJ	U Z L P C	K J CXC
EGBUQ	NKZUK	EQYRD	MKDZD
SHLEU	AMQEM	SUCVF	PMFQF
TJYSE	B PUSP	TEDWG	RPGUG
IKCTS	*L R E TR	IS FXH	VRHEH
OMDIT	YVSIV	0 TGZJ	W V J S J
NPFOI	CWTOW	N I H Q K	X WKTK
*ARGNO	D X I X	A 0 JUM	Z X M M
BVHAN	FZOAZ	B NKEP	Q $\mathrm{ZPOP}^{\text {P }}$
L W J B A	GQNBQ	*L A M S R	U Q R N R

(2) The selected generatnces (those marked by asterisks in Fig 48) are assembled in columnar manner

ALLA RRAN GEME NTSF 0 RRE Fhaozi 19

89
(3) The key letters are sought and give the keyword SOUP The plain text for the second message is now known, and by reference to the cipher text and the primary components, the keyword for this message is found to be TIME The complete texts are as follows

SOUP	T IME
ALLA	ALLe
Y HYE	C G S L
RRAN	RRAN
XUB U	ZQUB
GEME	GEME
KAPV	M N C T
NTS F	NTS F
L LTA	Y B V H
ORRE	ORRE
BUVV	LQFT
LIEF	LIEF
DYS A	FLRH
OFYO	OFY0
B PCQ	LMTA
UROR	UROR
TUNG	IQ ZW
GANI	GANI
KFAZ	MDQN
Z ATI	ZATI
EFIZ	S DTN
ONHA	ONHA
B D J E	LCBL
VEBE	VEBE
Z ALV	Q NET
ENSU	ENSU
I D TR	0 CVS
SPEN	S PEN
0 Q S U	N 2 R B
DEDX	DEDX
HAFK	J N O Q

45 The case of identical messages enciphered by keywords of dufferent lengths - a In the foregoing case the keywords for the two messages, although dufferent, were identical in length foregoing case the keywords for the two messages, although duferent, were idenucal in length slughtly modified
b Given the following two cryptograms suspected of contaning the same plan-text enciphered by the same primary components but with different keywords of dfferent lengths, solve the messages

Message No

M Y Z G	EAUNT	Pr	J I Z M B	UMYK B	V FIV V
SEOAF	SKXKR	YWCAC	ZORDO	ZRDEF	BLKFE
SMKSF	AFEKV	Q URCM	Y Z V $0 \times$	VABta	y y uoa
Y T DKF	ENW ${ }^{\text {W T }}$	D B Q K U	L A J L Z	I OUM	BOAFS
K X Q P U	Y M J P W	Q T D $\mathrm{B}^{\text {c }}$	OSIYS	M I Y K	R
Message No 2					
Z G A M W	I OMOA	C ODHA	C L R L P	MOQOJ	EMOQU
D HXBY	UQMGA	UVGLQ	DBSPU	0 ABIR	PWXYM
OGGFT	MRHV	GWKNI	VAUPF	ABRVI	LAQEM
Z D J X Y	MEDD	B OSVM	P N L G X	X DYD 0	P X B Y
Q M NKY	F L U Y Y	G V P V R	DNCZE	K J Q OR	W J X R V
G	X				

c The messages are long enough to show a few short repetitions which permit factoring The latter discloses that Message 1 has a period of 4 and Message 2, a period of 6 letters The messages are superimposed, with numbers marking the position of each letter in the corresponding perrod, as shown below
d A reconstruction skeleton of "secondary alphabets" is now made by distributing the letters in respective lines corresponding to the 12 different superimposed pairs of numbers For example, all pairs corresponding to the superimposition of position 1 of Message 1 with position 1 of Message 2 are distributed in lines \emptyset and 1 of the skeleton Thus, the very first supermposed pair is $\left\{\begin{array}{l}\mathrm{V} \\ \mathbf{Z} \\ 1\end{array}\right.$, the letter Z is inserted in line I under the letter V The next $\left\{\begin{array}{l}1 \\ 1\end{array}\right.$ imposition, with $\left\{\begin{array}{l}F \\ \mathrm{D}\end{array}\right.$, the letter D is inserted in line 1 under the letter F, and so on The skeleton is then as follows

e There are more than sufficient data here to permit of the reconstruction of a complete quivalent primary component, for example, the following

f The subsequent steps in the actual decipherment of the text of either of the two messages are of considerable intelest Thus far the cryptanalyst has only the clpher component of the primary sliding components The plain component may be identical with the clpher component and may progress in the same direction, or in the reverse durection, or, the two components may be dufferent If different, the plain component may be the normal sequence,列
g (1) It wll first be assumed that the pniary phe the mossage with the shorter key equence Applying the procedure outhed in Par 23 to the message wth the shorter key Message No 1, to gat in the he message the attempt is unsuccessful and it follows that the plain component is not the nimal direct sequence A normal reversed sequence is then assumed for the plam component and the proper procedure apphed Again the attempt is found useless Next, it is assumed and the proper procedure apphed Again the cipher component, and the procedure outlned in Par 37 is tried This also is unsuccessful Another attempt, assuming the plan component rums in the reverse direction, is likewise unsuccessful There remains one last hypothesis, viz, that the two primary components are different mixed sequences
(2) Here is Message No 1 transcribed in periods of four letters Uniliteral frequency distributions for the four secondary alphabets are shown below in Fig 52, labeled 1a, 2a, 3a, and $4 a$ These distributions are based upon the normal sequence A to Z But since the reconstructed capher component is at hand these distributions can be rearranged according to the sequence of the cipher component, as shown in distributions labeled $1 b, 2 b, 3 b$, and $4 b$ in Fug 52 The latter destributions may be combrned by shufting distributions $2 b, \$ b$, and $4 b$ to proper super impositions wuth respect to $1 b$ so as to yreld a single monoalphabetrc drstrubution for the entire message In other words, the polyalphabetc message can be converted into monoalphabetic terms, thus very considerably simplufyrng the solution

Mmasaga No 1

(3) Note in Fig 53 how the four distributions are shufted for superimposition and how the combined distribution presents the characteristics of a typical monoalphabetic distribution

$1 b$	
$2 b$	
36	
$4 b$	
$\begin{gathered} 1 b-4 b \\ \text { combined } \end{gathered}$	

(4) The letters belonging to alphabets 2, 3, and 4 of Fig 52 may now be transcribed in terms of alphabet 1 That is, the two E's of alphabet 2 become I's, the L of alphabet 2 becomes a K the C becomes a P, and so on Lukewise, the two K's of alphabet 3 become I's, the N becomes a T , and so on The entire message is then a monoalphabet and can readily be solved It is as follows

VDVTG ENEMY	$\begin{array}{lll} \text { I S W N S } \\ \text { HAS C A } \end{array}$	$\begin{array}{llll} K & O & \text { M } \\ P & \text { T } & \text { U } \\ \hline \end{array}$	$\begin{array}{lllll} \mathrm{L} & I & R & Z & Z \\ \mathrm{D} & \mathrm{H} & \mathrm{I} & \mathrm{~L} & \mathrm{~L} \end{array}$	$\begin{aligned} & U D V O B \\ & O N E T \end{aligned}$	$\begin{array}{llll} U & U & D & V \\ O & O & U \\ \hline \end{array}$
$\begin{array}{lllll} \text { F } & M & 0 & M & U \\ U & R & T & R & 0 \end{array}$	$\begin{array}{lllll} U & K & W & I & S \\ O & P & S & H & A \end{array}$	Y V E L F C G	$\begin{array}{lllll} R & D & S \\ I & D \\ I & A \\ \hline \end{array}$	$\begin{array}{llll} \mathrm{N} & \mathrm{~S} & \mathrm{D} & \mathrm{U} \\ \mathrm{C} & \mathrm{~A} & \mathrm{H} & 0 \end{array}$	$\begin{array}{lllll} \mathrm{Z} & \mathrm{~L} & \mathrm{~J} & \mathrm{U} \\ \mathrm{~L} & \mathrm{D} & \mathrm{~F} & 0 & R \end{array}$
$\begin{array}{lllll} S & D & I & U & F \\ A & N & H & O & U \end{array}$		$\begin{array}{lllll} W & W & R & P & Z \\ S & S & I & B & L \end{array}$	$\underset{Y}{G} \underset{L}{Z} \underset{O}{U} \underset{N}{D} \underset{G}{C}$	$\begin{aligned} & V M M Y \\ & E \\ & E M R E \end{aligned}$	$\begin{array}{llll} \mathrm{F} & \mathrm{~V} & \mathrm{~W} & \mathrm{M} \\ \mathrm{U} & \mathrm{E} & \mathrm{~S} & \mathrm{~T} \end{array}$
$\begin{array}{lllll} \text { V V D } \\ \text { E I I } & \mathrm{N} & \mathrm{~F} & \mathrm{U} \end{array}$		$\begin{array}{ccccc}\text { D } & \text { W O } \\ \mathrm{N} & \mathrm{T} & \mathrm{S} & \mathrm{T} & 0\end{array}$			$\begin{aligned} & \text { ZOMMUU } \\ & \text { LTROCO } \end{aligned}$
$\begin{array}{lllll} K & W & W & I & U \\ P & S & S & H & 0 \end{array}$		$\begin{aligned} & W V D O O Y \\ & S E E N T \end{aligned}$	$\begin{array}{lllll} R & S & C & V & U \\ I & A & G & E & 0 \end{array}$	$\begin{aligned} & M C V E O U \\ & R G G E T \end{aligned}$	
$\begin{aligned} & \text { L VMMRN } \\ & \text { DER } \\ & \hline \end{aligned}$	$\begin{aligned} & X M U S S L \\ & K R O O A D \end{aligned}$				

(5) Having the plain text, the derivation of the cipher component (an equivalent) is an easy matter It is merely necessary to base the reconstruction upon any of the secondary alphabeta, since the plain text-cipher relationship is now known directly, and the primary cppher component is at hand The primary plain component is found to be as follows
(6) The keywords for both messages can now be found, if desirable, by finding the equivalent of A_{0} in each of the secondary alphabets of the original polyalphabetic messages The keyword for No 1 is STAR that for No 2 is OCEANS

152018-38-7
(7) The student may, if he wishes, try to find out whether the primary components reconstructed above are the original components or are equivalent components, by examing all the structed above are the onginal components or are equivalent components, by examinin
possible decimations of the two components for evidences of derivation from keywords
h As already stated in Par 26l, there are certain statistical and mathematical tests that can be employed in the process of "matching" distributions to ascertain proper superimpositions for monoalphabeticity In the case just considered there were sufficient data in the distributions to permit the process to be apphed successfully by eye, without necessitating statistical tests \imath This case is an excellent illustration of the application of the process of converting a polyalphabetzc cupher into monoalphabetzc terms Because it is a very valuable and important cryptanalytic "trick," the student should study it most carefully in order to gann a good understanding of the pinciple upon which it is based and its slgnificance in cryptanalysis The
conversion in the case under discussion was possible because the sequence of letters forming the conversion in the case under discussion was possible because the sequence of letters forming the
cipher component had been reconstructed and was known, and therefore the uniliteral dscipher component had been reconstructed and was known, and therefore the unilteral dis-
tributions for the respective secondary cipher alphabets could theoretically be shifted to correct superimpositions for monoalphabeticity It also happened that there were sufficient data in the distributions to give proper indications for their relative displacements Therefore, the theoretical possibility in this case became an actuality Without these two necessary conditions the supermposition and conversion cannot be accomplished The student should always be on the lookout for situations in which this is possible

46 Concluding remarks - a The observant student will have noted that a large part of this text is devoted to the elucidation and application of a very few basic principles These principles are, however, extremely important and ther proper usage in the hands of a skilled ryptanalyst makes them practically indispensable tools of his art The student should therefore drill humself in the application of these tools by having someone make up problem after problem for him to practice upon, until he acquires facility in their use and feels competent to apply them in practice whenever the least opportunity presents itself This will save him much time and effort in the solution of bona fide messages
b Contmuing the analytical key introduced in Mulitary Cryptanalysis Part I, the outline for the studies covered by Part II follows herewith

APPENDIX 1

The 12 Types of Cipher Squares
(See Paragraph 7)
Table I-B ${ }^{1}$
Components
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (2) FBPYRCQZIGSEHTDJUMKVALWNOX Enciphering equations $\theta_{k / 2}=\theta_{1 / 1}, \theta_{p /}=\theta_{0 / 2}\left(\theta_{1 / 1}\right.$ is A$)$
plain text
ABCDEFGHIJKLMNOPQRSTUVWXYZ

 D \bar{D}
 F G G S E H H H

 , M M疁 N 0 O
 Q Q Z I G S E

 U

${ }^{1}$ This table 18 labeled "Table 1- B " because it is the same as Table $1-A$ on page 7 , except that the hoinzontal sequenc

Component
(2) ABCEFGHIJKLMNOPQRSTUVWXYZ (2) FBPYRQZIGSEHTDJUMKVALWNOX Encıphering equations $\theta_{\mathbf{x} / \Lambda}=\theta_{1 / 2}, \theta_{\mathrm{p} /}=\theta_{\mathrm{r} / 2}\left(\theta_{1 / 2}\right.$ is F$)$
plain text
ABCDEFGHIJKLMNOPQRSTUVWXYZ

 C $\frac{X}{O} \underset{X}{X} \frac{B}{F}$ D | N |
| :--- |$\frac{X}{\mathrm{X}} \mathrm{X}$

 G | A |
| :--- |
| \mathbf{A} |
| L | \mathbf{L} H V A L L W B N O

 K U L

 S I

Component
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (2) F B B PYRCQZIGSEHTDJUMKVALWNOX Encrphering equations $\theta_{k / 1}=\theta_{1 / 2}, \theta_{D / 2}=\theta_{0} /\left(\theta_{1 / 2}\right.$ is $\left.F\right)$

LaIN TEXT

LNOPQRSTUVWXYZ
 -

 D X
 $\underset{F}{\mathrm{~F}} \mathrm{Z}$

 I $\frac{\mathrm{C}}{\mathrm{C}} \mathrm{J}$

 K

 0 K Q
 S T N U O

 \mathbf{X}

Components

(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (2) FBPYRCQZIGSEHTDJUMKVALWNOX Enciphering equations $\theta_{k / 2}=\theta_{p / 1}, \theta_{1 /}=\theta_{\sigma / 2}\left(\theta_{1 / 1}\right.$ is $\left.A\right)$
plain text
ABCDEFGHIJKLMNOPQRSTUVWXYZ
 B B
 ${ }_{D}^{C}$

 G G I

 J J J D
 K

 T T H E S G I

 V V V

Components
DEFGHIJKLMNOPQRSTUVWXYZ (2) FBPYRCQZIGSEHTDJUMKVALWNOX Enciphering equations $\theta_{k / 2}=\theta_{\mathrm{c} / 1}, \theta_{\mathrm{t} / 2}=\theta_{\mathrm{p} / 2}\left(\theta_{1 / 1}\right.$ is A$)$

PLAIN TEXT

ABCDEFGHIJKLMNOPQRSTUVWXYZ
 B C L E E A A R

 F $\underset{H}{G}$

 J V O K K K E R
苗M X
 0 E X T K

 T
 V W C V R I L $\mathbf{X} \overline{\mathrm{F}} \mathbf{\mathrm { Y }} \mathrm{U}$

Components
(1)-ABCDEFGHIJKLMNOPORSTUVWXYZ (2)-FBPYRCQZIGSEHTDJUMKVALWNOX

Enciphering equations $\theta_{\mathrm{x} / 2}=\theta_{\mathrm{D} / 2}, \theta_{1 / 2}=0_{\mathrm{e} / 1}\left(\theta_{1 / 2}\right.$ is $\left.F\right)$
plain text
ABCDEFGHIJKLMNOPQRSTUVWXYZ
 B Z A

 F $\frac{A}{A} \frac{B}{\mathrm{~B}} \mathrm{C}$ G $\frac{R}{}$ S $\mathrm{H} \cdot \mathrm{O} \mathrm{P}$

 Z L , M M \mathcal{N} D E F F G H

 R

 \mathcal{U} K V H I W E F F G G H I I J K

Componets

(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ

 (1) ABCDEFGHIJKLMNOPQRSTUVWXYZ(2) FBPYRCQZIGSEHTDJUMKVALWNOX

Encıphering equations $\theta_{\mathrm{k} / 2}=\mathrm{O}_{\mathrm{e} / 1}, \Theta_{1 / 2}=\theta_{\mathrm{p} / 1}\left(\Theta_{1 / 2} \mathrm{IS} \mathrm{F}\right)$

plain text

ABCDEFGHIJKLMNOPQRSTUVWXYZ
 B B C

 H M I I I J

 $\therefore \mathrm{L}$ V
 N

 W X

Components
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (1) A B CDEFGHIJKLMNOPQRSTUVWXYZ
(2) FBPYRCQZIGSEHTDJUMKVALWNOX Enclphering equations $\theta_{\mathrm{k} / 1}=\theta_{\mathrm{p} / 2}, \theta_{1 / 2}=0_{\mathrm{c} / 2}\left(\theta_{1 / 2}\right.$ is A$)$

plain text

ABCDEFGHTJKLMNOPQRSTUVWXYZ

 C K

 $\underset{G}{F} \left\lvert\, \frac{J}{D}\right.$

 $\mathcal{J} \mathrm{E}$ K出 L

 0 O
 Q

 T B I I H L K U F
 W

${ }^{2}$ An interesting fact about this case is that if the plain component is made identical with the copher component (both being the sequence FBPY), and if the enciphering equations are the same as for Table 1-B,
then the resultant cipher square is identical with Table IX, except that the key letters at the left are in the then the resultant cipher square is identiceal with Table IX, except that the key letterb at the inf are in the
order of the reversed mixed component, FXON
In other words, the secondary clpher alphabets produced by the interaction of two identical mixed components are the same as those given by the interaction of a mused component and the normal component

Components

(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (1) ABCDEFGHIJKLMNOPQRSTMEWNOX

Enciphering equations $\theta_{\mathrm{k} / \mathrm{n}}=\theta_{\mathrm{c} / 2}, \theta_{1 / 2}=\theta_{\rho / 2}\left(\theta_{1 / 1} 19 \mathrm{~A}\right)$

PLAIN TEXT

ABCDEFGHIJKLMNOPQRSTUVWXYZ | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X |
| :--- | B C

 E F
 H

 \mathcal{V} W U \mathbf{X} M $\mathrm{Y} \mathbf{K} \mathbf{X}$

 follow the order of the direct mived component

Components

(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (2) FBPYRCQZIGSEHTDJUMKVALWNOX

Enciphering equations $\theta_{k / 1}=\theta_{D / 2}, \theta_{1 / 2}=\theta_{\mathrm{a} / 1}\left(\theta_{1 / 2} 1 \varsigma \mathrm{~F}\right)$
plain heyt
ABCDEFGHIJKLMNOPQRSTUVWXYZ
 $\left.B \frac{G}{H} \frac{Z}{A} \right\rvert\, \vec{N} \quad \bar{Q}$

 H N N $G: C$ T

 K \bar{Q} U L
 $\mathrm{Cl}_{\boldsymbol{M}}^{\mathrm{M}} \mathrm{N}$ 0 U P V O K B E P G D $Q \mathrm{~W}$ P L C C F Q H E I

Table XII
Components
(1) ABCDEFGHIJKLMNOPQRSTUVWXYZ (2) FBPYRCQZIGSEHTDJUMKVALWNOX

Enciphering equations $\theta_{\mathbf{k} / \Lambda}=\theta_{c / 2}, \theta_{1 / 2}=0_{p / n}\left(\theta_{1 / 2}\right.$ is F$)$
PLAIN IEXI
ABCDEFGHIJKLMNOPQRSTUVWXYZ

 J J

 M

 R M U

APPENDIX 2^{1}

Elemf ntary Statistical Theory Applicable to the Phenomena of Repetition in Cryptanalysi
1 Introductory -a In Par 9c it was stated that the phenomena of repetition in crypt analytics may be removed from the raalm of intuition and dealt with statistically The discussion of the matter will here be confined to relatively ample phuses of the theory of probability a definition of which imples phlosophical questions of no prachical interest to the student of ciyptanalysis For his purposes, the followng definition of a proorl probability will be sufficient

The probability that an event will occur is the ratio of the number of "fav-
orable cases" to the number of total possible cases, all cases being equally
likely to occur By a "favorable case" 15 moant one which will produce the event in question
b In what follows, 1 eference will be made to random assortments of letters and especially to random text By the latter will be meant merely that the text under consideration has been assumed to have been enciphered by come more or less complex cryptographic system so that for all practical puposes the sequence of letters constituting this text is a random assortment, that 1s, the sequence is just about what would have becn obtained if the letters had been drawn at random out of a box contanning a large number of the 26 letters of the alphabet, all in equal proportions, so that there are exactly the same numbers of A's, B's, C's, Z's It is assumed that each time in making a drawng fiom such a bor, the latter is thoroughly shaken so that the lettors ane thoroughly mixed and then a single letter is selected at random, recorded, and
 1 e , lacl ing crests and troughs
d For purposes of statistical analysis, the text of a monoalphabetic substitution cipher 1 equivalent to plan text As a corollary, when a polvalphabetic substitution cipher has been cipher text have been allocated into their proper uniliteral distributions, the letters falling into the respective distributions are statistically equivalent to plann tost

2 Data pertaining to single letters - a (1) A single letter will be drawn at random fiom the box What is the probability that it will be an $A^{\text {P }}$ According to the foregoing definition of probability, since the total number of possible cases is 26 and the number of favorable cases is here only 1 , the probability is $126=\frac{1}{26}=0385$ This is the probabilty of drawing an A from the box The probability that the letter drawn will beaB,aC, a D, , a Z_{19} the same as for A In othei words, the probability of drawing any specified single letter is $p=0385$
(2) The value $p=0385$, as found above, may also be termed the probability constant for single letters in random the reciprocal of the total number of dufterent chasacters which may be employed in writing th text in question
${ }^{1}$ In the preparation of this appendix, the author has had the benefit of the very helpful suggestions of
 the hassis of the disclussion
(3) Another way of interpreting the notation $p=0385$ is to say that in a large volume of random text, for example in 100,000 letters, any letter that one may choose to specify may be expected to occur about 3,850 times, in 10,000 letters it may be expected to occur about 385 tumes, in 1,000 letters, about 385 times, and so on In every-day language it would be said that "in the long run" or "on the average" in 1,000 letters of random text there will be about 385 occurrences of each of the 26 letters of the alphabet
(4) But unfortunately, in cryptanalysis it is not often the case that one has such a large number of letters available for study in any single cipher alphabet More often the cryptanalyst has a relatively small number of letters and these must be distributed over several cipher alphabets Hence it is necessary to be able to deal with smaller numbers of letters Consider a specific prece of random text of only 100 letters It has been seen that "in the long run" the 26 letters will hive on average fiequency of 385 But in leaching this average of 385 occurrences in 100 letters, it is oble that some letter or letters may not oppear at all, some may appear once, some twice, and so on How many will not appear at all, how many will appear $1,2,3$, tımes? In other words, how will the different categones of letters (differappear $1,2,3$, tymes? In other words, how will the dirferent categones of letters (different in respect to frequency of occurrence) be distributed, or what will the distributzon be like?
Will it follow any kind of law or pattern? The cryptanalyst also wants to know the answer to questions such as these What is the probability that a specified letter will not appear at all in a given puece of text? That it will appear exactly $1,2,3$, times? That it will appear at least $1,2,3, \quad$ times? The same soit of questions may be asked with respect to digraphs, trgraphs, and so on
b (1) It may be stated at once that questions of this nature are not easily answered, and a complete discussion falls quite outside the scope of this text However, it will be sufficient for the present purposes if the student is provided with a more or less sumple and practical means of finding the answers With this in view certain cuives have been prepared from data based upon Poisson's exponential expansion, or the "law of small probabilities' and their use will now be explaned Students without a knowledge of the mathematical theory of probability and statistics will have to take the curves "on farth" Those interested in their derivation are referred to the following texts

Fisher, R A, Statistical Methods for Research Workers, London, 1937
Fry, T C, Probabulity and Its Engineering Uses, New York, 1928
(2) By means of these probabllity curves, it is possible to find, in a relatively easy manner, the probability for $0,1,2,11$ occurrences of an event in n cases, if the mean (expected, average, probable) number of occurrenc es in these n cases is known For example, given a cryptogram equivalent to 100 letters of iandom text, what is the probability that any specified single
letter, whatever will not appear at all in the cryptogram? Since the probability of the occurrence of a specfied single letter is $\frac{1}{26}=0385$, and there are 100 letters in the cryptogram, the average or expected or mean number of occurrences of an A, a $\mathrm{B}, \mathrm{a} \mathrm{C}$, , is $0385 \times 100=385$ Refer now to that probability curve which is marked " 0_{0} ", meaning "frequency zero", or "zero occurrences" On the horizontal or x axis of that curve find the point corresponding to the value 385 and follow the vertical coordinate determined by this value up to the point of intersection with the curve itself, then follow the horisontai coordinate detel mined by this intersection point over to the left and read the value on the vertical axis of the curve it is approxmately 021 This means that the probability that a specified single letter (an A, a B, a C,) will not appear at all in the cryptogram, if it really were a peffectly random assortment of 100 letters, is 021.

152018-38-

That is, according to the theory of probability, in 1,000 cases of random-text messages of 100 letters each, one may expect to find about 21 messages in which a specified single letter will not appear at all Another way of saying the same thing is If 1000 sets of 100 letters of random text are examined, in about 21 out of the 1,000 such sets any letter that one may choose to name will be absent Ihis, of course, is merely a theoretical expectancy, it indicates only what probably will harpen in the long run
(3) What is the probability that a specificd single letter will oppear exactly once in 100 letters of random text? To answer this question, find on the curie marked f_{1}, the point of mtersection of the vertical coordinate corresponding to the mean or average value 38 ; with the curve, follow the horizental coordinate thas determined over to the verical scale at the left, read the value on this scale It is 082 , which means that in 1,000 cases of random-text messages of 100 letters each, one may expect to find about 82 messages in which any letter one chooses to specify will occur exactly once, no more and no less
(4) In the same way, the probability that a specified single letter will appear exactly twice is found to be 158 , exactly 3 times, 202 , and so on, as shown in the table below

100 letters of random text

$\underset{(x)}{\text { Frequency }}$	Probability that a specified single letter wul occul exactis x imes
0	0021
1	082
2	158
3	202
4	195
5	150
6	096
7	053
8	026
9	011
10	004
11	001

(5) To find the probability that a specified single letter will occur at least $1,2,3$, times in a series of letters constituting random text, one reasons as follows Since the concept "at least 1 " mphes that the number specified is to be considered only as the minimum, with no limat indicated as to maximum, occurrences of $2,3,4$, are also "favorable" cases, the probabilities for exactly $1,2,3,4$, occurrences should therefore be added and this will give the probability for "at least 1 " Thus, in the case of 100 letters, the sum of the probabilities for exactly 1 to 11 occurrences, as set forth in the table directly above, is 978 , and the latter value approxamates the probability for at least 1 occurrence
(6) A more accurate result will be obtained by the following reasoning The probablity for zero occurrences is 021 Snce it is certain that a specified letter will occur either zero times or $1,2,3$, times, to find the probablily for at least one ume it is merely necessary to subtract the probability for zero occurrences from unity That $1 \mathrm{~s}, 1-021=979$, wheh is 001 greater than the result obtanned by the other method The reason it is greater is that the value 979 includes occurreaces beyond 11, which were excluded from the previous calculation Of course, the probabilities for these occurrences beyond 11 are very small, but taken all together they

Curves showing probability for $4,5,6$, and 7 occurrences of an event in n cases, given the mean number of occurrences

add up to 001, the dufference between the results obtamed by the two methods The probatulity for at least 2 occurrences is the difference between unty and the sum of the probability for zero and exactly 1 occurrences, that $1 \mathrm{~s}, 1-\left(P_{0}+P_{1}\right)=1-(021+082)=1-103=897 \quad$ The respective probabilities for vanous numbers of occurrences of a specified single letter (from 0 to 11) are given in the following table

Frequency (x)	Probabllity that a spectfled single letter will occur exactly x tumes	Probability that a specifled single letter will occur at least x times
0	0021	1000
1	082	979
2	158	897
3	202	739
, 4	195	537
5	130	342
6	096	192
7	053	096
8	026	043
8	011	017
10	004	006
11	001	002

(7) The foregong calculations refer to random text composed of 100 letters For other numbers of letters, it is meely necessary to find the mean (multiply the probability for drawing a specified sungle letter out of the box, which $1 \frac{1}{26}$ or 0385 , by the number of letters in the assortment) and refer to the various curves, as before For example, for a random assortment of 200 letters, the mean is 200×0385, or 77 , and this is the value of the point to be sought along the horizontal or x axes of the curves, the intersections of the respective vertical hnes corresponding to this mean with the various curves fur $0,1,2,3, \quad$ occurrences give the probabilities for these occurrences, the reading being taken on the vertical or y axes of the curves
(8) The discussion thus far has dealt with the probabilities for $0,1,2,3$, occurrences of specified single letters It may be of more practical advantage to the student if he could be shown how to find the answer to these questions Given a random assortment of 100 letters how many letters may be expected to occur exactly $0,1,2,3$, tumes? How many may be expected to occur at least $1,2,3$, tumes? The curves may here agan be used to answer these questions, by a very simple calculation multiply the probability value as obtained above for a specified single letter by the number of dffierent elements being considered For example, the probability that a specified single letter will occur exactly twice in a perfectly random assortment of 100 letters is 158 , since the number of different letters is 26 , the absolute number of single letters that may be expected to occur exactly 2 times in this assortment is $158 \times 26=4108$ That is, in 100 letters of randm text there should be about four letters which occur exactly 2 times The following table gives the data for variou s numbers of occurrences

100 letters of random lext

${ }_{\text {Freacuencs }}^{(x)}$				
0	0021	1000	0546	26000
1	082	979	2132	25454
2	158	897	4.108	23322
3	202	739	5252	19214
4	195	537	5070	13962
5	150	342	3900	8892
6	096	192	2496	4992
7	053	096	1378	2496
8	026	043	676	1118
9	011	017	286	442
10	004	006	104	156
11	001	002	026	052

(9) Referring agan to the curves, and specaficallv to the tabulated results set forth durectly above, it will be seen that the probability that there will be exactly two occurrences of a specfied single letter in 100 letters of random text (158), is less than the probablity that there will be exactly three occurrences (202), in other words, the chances that a specified single letter will occur exactly three times are better, by about 25 percent, than that it will occur only two times Furthermore, there will be about five letters which will occur exactly 3 times, and about five which will occur exactly 4 times, whereas there will be only about two letters which will occur exactly 1 time Other facts of a similar import may be deduced from the foregoing table
c The discussion thus far has dealt with random assortments of letters What about other types of texts, for example, normal plann text What is the probabilty that E will occur 0, 1 , that a letter selected at random from a large volume of normal English text will be E is 12604 (In 100,000 letters E occurred 12,604 times) For 50 letters this value must be multiphed by 50 giving 63 as the mean or point to be found along the x aves of the curves The probabilities for $0,1,2,3$, occurences are tabulated below

${ }_{\text {Frequency }}^{(z)}$	Probabilut that drawn munactly dran x times	Probability that an E will be drawn at least drawn at lea x tmes
0	0002	1000
1	011	998
2	036	987
3	078	951
4	120	875
${ }_{5}^{5}$	151	${ }^{755}$
6	159	604
7	143	445
8	113	302
9	079	223
10	050	173
11	029	123

for monographic conncidence in random text is 0385 the expected number of comendences is $.0385 \times 45=17325$ With $m=17$ one consults the various probability curves and an approximate distribution for exactly and for at least $0,1,2$, comncidences may readdy be ascertaned ${ }^{4}$ e (1) Now consider the matter of monographic comcidence in Enghsh plan text ${ }^{5}$ Following the same reasoning outlined in subpar d (1), the probability of cancidence of two A's in plam text is the square of the probability of occurrence of the single letter A in such text The probability of concidence of two B's is the square of the probability of occurrence of the single letter B, and so on The sum of these squares for all the letters of the alphabet, as shown in the following table, is found to be 0667

	Letter		Probability of sep arate occur of the lettar	square of proba oceurreace
A		7366	00737	00054
B		974	0097	0001
C.		3068	0307	0009
D		4244	0424	0018
E		12998	1300	0169
F		2832	0283	0008
G		1638	0164	0003
H		3388	0339	0012
I		7352	0735	0054
J		164	0016	0000
K		296	0030	0000
L		3642	0364	0013
M		2474	0247	0006
N		7950	0795	0063
0		7528	0753	0057
P		2670	0267	0007
-		350	0035	0000
R		7576	0758	0057
5		6116	0612	0037
T		9190	0919	0084
U		2600	0280	0007
v		1532	0153	0002
${ }^{\text {w }}$		1560	0156	0002
7		462 1934	0046	0000
\%		1934	0193	0004
z		98	0010	0000
		1,000 00	10000	0667
${ }^{1}$ The data given are taken from Table 3 Appendir 1 Nilitary Cryptanals sis Part I				

This then is the probability that any two letters solected at random in a large volume of normal Enghsh telegraphic plain text will concide Since this value remains the same so long as the character of the language does not change radically, it may be sad that the probabaluty of monographuc conncidence in English telegraphuc plain text is 0667, or $\kappa_{p}=0667$

- The approximation given by the Poisson distribution in the case of single letters is not as good as that
 in a technical paper written in 1 1925 dealng in with has solution of messages eneiphered by a eryptograph known
as the "Hebern Electric Super-Code" The paper was printed in 1934
(2) Given 10 letters of Enghsh plan text, what is the probability that there will be 0, 1 2, single-letier conncidences expected number of comendences is $0667 \times 45=300$, or $m=3$ The distribution for exactly and for at least $0,1,2$ comendences may readly be found by reference to the various probabilaty curves (See footnote 4)
f The fact that κ_{p} (for English) is almost twice as great as κ_{r} is of considerable mportance in cryptanalysis It will be dealt with in detal in a subsequent text At this point it will merely be said that κ_{p} and $k_{\text {r }}$ for other languages and alphabets have been calculated and show considerable variation, as will be noted in the table shown in paragraph $3 d$

3 Data pertaining to digraphs.-a (1) The foregoing discussion has been iestricted to questions concerning single letters, but by slight modification at can be applied to questions concerning digraphs, trigraphs, and longer polygraphs
(2) In the preceding cases it was necessary, before referring to the vanous probability curves, to find the mean or expected number of oecurrences of the event in question in the total number of cases or trials being considered Gaven a prece of random text totalling 100 digrapher example, what is the mean (average, probable, expected) number of occurreneas digraphs in this text? Since there are $67 \boldsymbol{6}$ diferent digraphs, the probainty of occurrence are taken consecutivelv in pars) the mean or average number of occurrences in this case is $00148 \times 99=147$ Having the mean number of occurrences of the event under consideration one may now find the answers to these questions What is the probability that any specifie digraph, say XY, will not occur? What is the probability that it will occur exactly 1, 2, 3, tımes? At least 1, 2, 3,
times?
(3) Again the probability curves may be used as before, for the type of distribution is the same The following values are obtamable by reference to the vanous curves, using the mean value $00148 \times 99=147$

100 letters of random text

${ }_{\text {Froauency }}^{(f)}$			Probable number of digraphs ap- pearing pxactily x times	Probable number of digraphs ap- pearing at least x times
0	086	100	58136	6760
1	13	14	8788	94.64
2	01	01	676	676
3	00	00	000	000

(4) Thus it is seen that in 100 letters of random text the probablity that a specified digraph will occur exactly once, for example, is 13 , at least once, 14 , at least twice, 01 The probability that a specified digraph will occur at least 3 times is negligible (By calculation, it is found to to be 0005)
b (1) The probability of digraphic comendence in random text based upon a 26 -element alphabet is of course quite simply obtaned sunce there are 26^{2} different digraphs, the probability of selecting any specified digraph in random text is $\frac{1}{26^{2}}$ The probability of selecting two identucal digraphs in such text, when the dugraphs are specified, is $\frac{1}{26^{2}} \times \frac{1}{26^{2}}=\frac{1}{26^{4}}$ Since there are 26^{2} different digraphs, the probability of digraphic coincidence in random text, $\kappa_{r}{ }^{2}$, is $26^{2} \times \frac{1}{26^{4}}=\frac{1}{26^{2}}=$ 00148
(2) Given a random assortment of 100 letters, what is the probability of occurrence of $0,1,2$, dgraphic conncidences? Following the line of reasoning in paragraph $2 d$ (2), in 100 letters the total number of comparisons that may be made to see if two digraphs coincide is 4,851 This number is obtained as follows Consider the 1st and 2d letters in the series of 100 letters, they may be combined to from a digraph to be compared with the digraphs formed by combining the 2 d and 3 d , the 3 d and 4th, the 4th and 5th letters, and so on, giving a total of 98 comparisons Consider the digraph formed by combining the 2 d and 3 d letters, it may be compared with the digraphs formed by combining the 3d and 4th, 4th and 5th letters, and so on, giving a total of 97 comparisons This process may be contrinued down to the digraph formed解 compared only with the digraph resulting from combining the 99th and 100th letters The total numbe (3)
(3) Since in the 100 letters there are 4,851 opportunities for the occurrence of a digraphic coincidence, and since $K_{r}{ }^{2}=00148$, the expected number of coincidences is $00148 \times 4851=$ $717948=72$ The various probability curves may now be referred to and the following results are obtamed

Frequency (${ }^{\text {a }}$)		
0	0001	1000
1	005	999
2	019	994
3	046	975
4	083	929
5	120	846
6	144	726
7	148	582
8	134	434
${ }^{9}$	107	300
10	077	193
11	050	116

c In this table it will be noted that it is almost certan that in 100 letters of random text there will be at least one digraphic comcidence, despite the fact that there are 676 possible there will be at least one digraphic coincidence, despite the fact that there are 676 possible
digraphs and only 99 of them have appeared in 100 letters When one thinks of a total of 676 digraphs and only 99 of them have appeared in 100 letters When one thinks of a total of 676
different digraphs from which the 99 digraphs may be selected it may appear rather meredible that the chances are better than even (582) that one will find at least 7 dgraphic concidences in 100 letters of random text, yet that is what the statistical analysis of the problem shows to be the case These are, of course, purely accudental repettitons It is important that the student should fully realize that more comcidences or accidental repetitions than he feels inturtively should occur in random text will actually occur in the cryptograms he will study He must therefore be on guard against putting too much reliance upon the surface appearances of the phenomena of repetition, he must calculate what may be expected from pure chance, to make sure that the number and length of the repetitions he does see in a cryptogram are really better than what may be expected in random text In studying cryptograms composed of figures this

- The formula for finding the number of comparisons that can be made is as follows, where $n=$ the total number of letters in the sequence and t is the length of the polygraph No. of comparisons $=\frac{(n-t)(n-t+1)}{2}$
very umportant, for as the number of dufferent symbols decreases the probabilaty for purely ance councidences uncreases
6, and of the reciprocals of the squares, cubes, and 4th powers of vanious numbers from 20 to
6, and of the reciprocals of the squares, cubes, and 4th powers of these numbers are listed:

r	1/s	1/x1	1/85	1/21
20	00500	0002500	0000125	000000625
21	0476	002260	000108	00000514
22	0455	002070	000094	00000429
23	0435	001892	000082	00000358
24	0417	001739	000073	00000302
25	0400	001800	000064	00000256
26	0385	001482	000057	00000220
27	0370	001369	000051	00000187
28	0357	001274	000046	00000162
29	0345	001190	000041	00000142
30	0333	001109	000037	00000123
31	0323	001043	000034	00000109
32	0813	000980	000031	00000096
33	0803	000918	000028	00000084
34	0294	000864	000025	00000075
35	0286	000818	000023	00000067
36	0278	000773	000021	00000060

(2) The following table gives the probabilities for monographic and digraphic comedence for plain-text in several languages

I anguage	κ^{\prime}	$\mathrm{k}_{2}{ }^{2}$
Englah..	00667	00069
French.	0778	0093
German.	0762	0112
Italan.	0738	0081
Spamish.	0775	0093

4 Data pertaining to trigraphs, etc - a Enough has been shown to make clear to the student how to calculate probabihty data concerning trigraphs, tetragraphs, and longer polygraphs
b (1) For example, in 100 letters of random text the value of m (the mean) for trigraph is $00005689 \times 100=005689$ With so small a value, the probablity curves are hardly usable but at any rate they show that the probablity of occurrence of a specfied trigraph in so small a volume of text is so small as to be practically negligible The probability of a specified trigraph occurrng twice in that text is an even smaller quantity
(2) The calculation for finding the probability of at least one trigraphic comncidence in 100 letters of random text is as follows

$$
m=\left(\frac{97 \times 98}{2}\right)\left(\frac{1}{26^{6}}\right)=4,753 \times 0000568912=2704=27
$$

Referring to curve f_{0}, with $m=27$ the probability of finding no trigraphic coincidence is 76 . The probability of finding at least one trigraphic coincidence is therefore $1-76=24$
c The calculation for a tetragraphic comcidence is as follows

$$
m=\left(\frac{96 \times 97}{2}\right)\left(\frac{1}{26^{4}}\right)=4,656 \times 0000021888=0101=01
$$

Referring to curve f_{0}, with $m=01$ the probability of finding no tetragraphic councidance an so high as to amount almost to certannty Consequently, the probability of finding at least
one tetragraphe coincidence is practically nul (It is calculated to be 0094=approximately 01 This means that in a hundred cases of 100 -letter random-text cryptograms, one might expect to find but one cryptogram in which a 4 -letter repetition is brought about purely by chance, it is, in common parlance, a "hundred to one shot") Consequently, if a tetragraphic repetition is, in common parlance, a "hundred to one shot") Consequently, if a tetragraphic repetition is found in a cryptogram of 100 letters, the probability that it is an accidental repetition is
extremely small If not accidental, then it must be causal, and the cause should be ascertained 5 An example - a The message of Par $9 a$ of the text proper will be employed First, let the repetitions be sought and underined, then the repetitions are listed for convenience

| A | USYES | ECPMP | LCCLN | XBWCS | OXUVD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| B | SCRHTT | HXIPL | I BCI J | USYEE | GURDP |
| C | AYBCX | OFP JW | JEMGP | XVEUE | LEJYQ |
| D | MUSCX | JYMSG | LLETA | LEDEC | GB MFI |

Group	Number of occurrences
BC	2
CX	2
EC	2
LE	3
JY	2
PL	2
SC	2
SY	2
US	3
YE	2
SYE	2
USY	2
USYE	2

b Referring to the table in Par $3 a$ (3) above, it will be seen that in 100 letters of random text one mught expect to find about 7 dagraphs appearing at least twice and no diga aph appearng 3 times The list of repetitions shows 8 digraphs occurring twice and 2 occurring 3 tumes
c Agam, the hast of repetitions shows 10 digraphs each repeated at least twice, the table in Par $3 b$ (3) above shows that in 100 letters of random text the probability of finding at least that many digraphec comerdences is only 193 That is, the chances of this being an accident are but 176 in a thousand, or another way of expressing the same thing is to say that the odds against this phenomenon being an accident are as 807 is to 193 or roughly 4 to 1
d The probability of finding at least one trigraphic comcidence in 100 letters of random text is very small, as noted in Par $4 b$, the probability of finding at least one tetragraphic coincidence is still smaller (Par 4c) Yet this cipher message of but 100 letters contains a repetition of this length
e A consideration of the foregoing leads to the conclusion that the number and length of the repetitions manifested by the cryptogram are not accidental, such as might be expected to occur in random text of the same length, hence they must be causal in thoir orgin The cause in this case is not dufficult to find repeated isolated letters and repeated sequences of letters (digraphs, trigraphs) in the plain text were actually enciphered by identical alphabets, resulting in producing
repeated letters and sequences in the cipher text

INDEX

age	Page
Probability-Continued	Repetitions
Of monographic comeldence.------------- 113ff	
Of tetragraphic coincidence.-..--.------- 117	Causal.-.-.--.-.-.----------.--------- 12
Of trigraphic comncidence...-.-.-.-.------ 117	
	Secondary alphabets----------------------- 4
Progressive alphabet system....-.-..--.---.---- 3	Sequence reconstruction skeleton.-.....-.----- 26
Reconstruction of equivalent primary compo-	
	Tetragraphic comendence--.-.-................ 117
Reconstruction skeletons . .-..... Footnote 1.. 26, 56	
	Trigraphin coincidence...--------.-....-....... 117
Repeating-key ciphers	Trigraphs, data pertaining to .-.-.-.----.-...- 117
Primary components are different mixed	
sequences...------------------------- 80	
Solution of subsequent messages enciphered by the same primary components_-... 78ff, 80ff	

